Conductance-based models and the fragmentation problem: A case study based on hippocampal CA1 pyramidal cell models and epilepsy

  • Computer modelling of epilepsy.

    Nat Rev Neurosci. 2008; 9: 626-637https://doi.org/10.1038/nrn2416

    • Hines M.L.
    • Morse T.
    • Migliore M.
    • Carnevale N.T.
    • Shepherd G.M.

    ModelDB: a database to support computational neuroscience.

    J Comput Neurosci. 2004; 17: 7-11https://doi.org/10.1023/B:JCNS.0000023869.22017.2e

  • Mesial temporal lobe epilepsy: what have we learned?.

    Neuroscientist. 2001; 7: 340-352https://doi.org/10.1177/107385840100700410

    • Kandratavicius L.
    • Balista P.A.
    • Lopes-Aguiar C.
    • Ruggiero R.N.
    • Umeoka E.H.
    • Garcia-Cairasco N.
    • et al.

    Animal models of epilepsy: use and limitations.

    Neuropsychiatr Dis Treat. 2014; 10: 1693-1705https://doi.org/10.2147/NDT.S50371

    • Hines M.L.
    • Carnevale N.T.

    NEURON: a tool for neuroscientists.

    Neurosci Rev J Bringing Neurobiol Neurol Psychiatry. 2001; 7: 123-135

    • Bezaire M.J.
    • Raikov I.
    • Burk K.
    • Vyas D.
    • Soltesz I.

    Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit.

    ELife. 2016; 5https://doi.org/10.7554/eLife.18566

    • Bianchi D.
    • Marasco A.
    • Limongiello A.
    • Marchetti C.
    • Marie H.
    • Tirozzi B.
    • et al.

    On the mechanisms underlying the depolarization block in the spiking dynamics of CA1 pyramidal neurons.

    J Comput Neurosci. 2012; 33: 207-225https://doi.org/10.1007/s10827-012-0383-y

    • Bloss E.B.
    • Cembrowski M.S.
    • Karsh B.
    • Colonell J.
    • Fetter R.D.
    • Spruston N.

    Structured dendritic inhibition supports branch-selective integration in CA1 pyramidal cells.

    Neuron. 2016; 89: 1016-1030https://doi.org/10.1016/j.neuron.2016.01.029

    • Cassarà A.M.
    • Maraviglia B.

    Microscopic investigation of the resonant mechanism for the implementation of nc-MRI at ultra-low field MRI.

    NeuroImage. 2008; 41: 1228-1241https://doi.org/10.1016/j.neuroimage.2008.03.051

    • Cavarretta F.
    • Carnevale N.T.
    • Tegolo D.
    • Migliore M.

    Effects of low frequency electric fields on synaptic integration in hippocampal CA1 pyramidal neurons: implications for power line emissions.

    Front Cell Neurosci. 2014; 8https://doi.org/10.3389/fncel.2014.00310

    • Combe C.L.
    • Canavier C.C.
    • Gasparini S.

    Intrinsic mechanisms of frequency selectivity in the proximal dendrites of CA1 pyramidal neurons.

    J Neurosci. 2018; 38: 8110-8127https://doi.org/10.1523/JNEUROSCI.0449-18.2018

  • Progressive effect of beta amyloid peptides accumulation on CA1 pyramidal neurons: a model study suggesting possible treatments.

    Front Comput Neurosci. 2012; 6https://doi.org/10.3389/fncom.2012.00052

  • Action potential backpropagation.

    in: Jaeger D. Jung R. Encycl. Comput. Neurosci. Springer New York,
    New York, NY2015: 133-137https://doi.org/10.1007/978-1-4614-6675-8_123

  • An integrative model of the intrinsic hippocampal theta rhythm.

    PLoS One. 2017; 12e0182648https://doi.org/10.1371/journal.pone.0182648

    • Kim Y.
    • Hsu C.-L.
    • Cembrowski M.S.
    • Mensh B.D.
    • Spruston N.

    Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal pyramidal neurons.

    ELife. 2015; 4e06414https://doi.org/10.7554/eLife.06414

  • Computational simulation of the input–output relationship in hippocampal pyramidal cells.

    J Comput Neurosci. 2006; 21: 191-209https://doi.org/10.1007/s10827-006-8797-z

    • Marcelin B.
    • Chauvière L.
    • Becker A.
    • Migliore M.
    • Esclapez M.
    • Bernard C.

    h channel-dependent deficit of theta oscillation resonance and phase shift in temporal lobe epilepsy.

    Neurobiol Dis. 2009; 33: 436-447https://doi.org/10.1016/j.nbd.2008.11.019

    • Miceli F.
    • Soldovieri M.V.
    • Lugli L.
    • Bellini G.
    • Ambrosino P.
    • Migliore M.
    • et al.

    Neutralization of a unique, negatively-charged residue in the voltage sensor of KV7.2 subunits in a sporadic case of benign familial neonatal seizures.

    Neurobiol Dis. 2009; 34: 501-510https://doi.org/10.1016/j.nbd.2009.03.009

    • Miceli F.
    • Soldovieri M.V.
    • Ambrosino P.
    • Barrese V.
    • Migliore M.
    • Cilio M.R.
    • et al.

    Genotype–phenotype correlations in neonatal epilepsies caused by mutations in the voltage sensor of K(v)72 potassium channel subunits.

    Proc Natl Acad Sci U S A. 2013; 110: 4386-4391https://doi.org/10.1073/pnas.1216867110

    • Migliore M.
    • Ferrante M.
    • Ascoli G.A.

    Signal propagation in oblique dendrites of CA1 pyramidal cells.

    J Neurophysiol. 2005; 94: 4145-4155https://doi.org/10.1152/jn.00521.2005

  • Know your current Ih: interaction with a shunting current explains the puzzling effects of its pharmacological or pathological modulations.

    PLoS One. 2012; 7e36867https://doi.org/10.1371/journal.pone.0036867

    • Müllner F.E.
    • Wierenga C.J.
    • Bonhoeffer T.

    Precision of inhibition: dendritic inhibition by individual GABAergic synapses on hippocampal pyramidal cells is confined in space and time.

    Neuron. 2015; 87: 576-589https://doi.org/10.1016/j.neuron.2015.07.003

    • Neymotin S.A.
    • Hilscher M.M.
    • Moulin T.C.
    • Skolnick Y.
    • Lazarewicz M.T.
    • Lytton W.W.

    Ih tunes theta/gamma oscillations and cross-frequency coupling in an in silico CA3 model.

    PLoS One. 2013; 8e76285https://doi.org/10.1371/journal.pone.0076285

    • Poirazi P.
    • Brannon T.
    • Mel B.W.

    Pyramidal neuron as two-layer neural network.

    Neuron. 2003; 37: 989-999

    • Safiulina V.F.
    • Caiati M.D.
    • Sivakumaran S.
    • Bisson G.
    • Migliore M.
    • Cherubini E.

    Control of GABA release at single mossy fiber-CA3 connections in the developing hippocampus.

    Front Synaptic Neurosci. 2010; 2https://doi.org/10.3389/neuro.19.001.2010

    • Shah M.M.
    • Migliore M.
    • Valencia I.
    • Cooper E.C.
    • Brown D.A.

    Functional significance of axonal Kv7 channels in hippocampal pyramidal neurons.

    Proc Natl Acad Sci. 2008; 105: 7869-7874https://doi.org/10.1073/pnas.0802805105

    • Shah M.M.
    • Migliore M.
    • Brown D.A.

    Differential effects of Kv7 (M-) channels on synaptic integration in distinct subcellular compartments of rat hippocampal pyramidal neurons.

    J Physiol. 2011; 589: 6029-6038https://doi.org/10.1113/jphysiol.2011.220913

    • Sterratt D.C.
    • Groen M.R.
    • Meredith R.M.
    • van Ooyen A.

    Spine calcium transients induced by synaptically-evoked action potentials can predict synapse location and establish synaptic democracy.

    PLoS Comput Biol. 2012; 8e1002545https://doi.org/10.1371/journal.pcbi.1002545

    • Vladimirov N.
    • Tu Y.
    • Traub R.D.

    Shortest loops are pacemakers in random networks of electrically coupled axons.

    Front Comput Neurosci. 2012; 6https://doi.org/10.3389/fncom.2012.00017

    • Watanabe S.
    • Hoffman D.A.
    • Migliore M.
    • Johnston D.

    Dendritic K+ channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons.

    Proc Natl Acad Sci. 2002; 99: 8366-8371https://doi.org/10.1073/pnas.122210599

    • Cannon R.C.
    • D’Alessandro G.

    The ion channel inverse problem: neuroinformatics meets biophysics.

    PLoS Comput Biol. 2006; 2: e91https://doi.org/10.1371/journal.pcbi.0020091

  • Role of multiple calcium and calcium-dependent conductances in regulation of hippocampal dentate granule cell excitability.

    J Comput Neurosci. 1999; 6: 215-235

  • An ontology-based search engine for digital reconstructions of neuronal morphology.

    Brain Inform. 2017; 4: 123-134https://doi.org/10.1007/s40708-017-0062-x

    • Herz A.V.M.
    • Gollisch T.
    • Machens C.K.
    • Jaeger D.

    Modeling single-neuron dynamics and computations: a balance of detail and abstraction.

    Science. 2006; 314: 80-85https://doi.org/10.1126/science.1127240

  • What will save neuroscience?.

    NeuroImage. 1996; 4: S29-S33https://doi.org/10.1006/nimg.1996.0047

    • Balbi P.
    • Massobrio P.
    • Hellgren Kotaleski J.

    A single Markov-type kinetic model accounting for the macroscopic currents of all human voltage-gated sodium channel isoforms.

    PLoS Comput Biol. 2017; 13e1005737https://doi.org/10.1371/journal.pcbi.1005737

    • Hu W.
    • Tian C.
    • Li T.
    • Yang M.
    • Hou H.
    • Shu Y.

    Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and backpropagation.

    Nat Neurosci. 2009; 12: 996-1002https://doi.org/10.1038/nn.2359

    • Khaliq Z.M.
    • Gouwens N.W.
    • Raman I.M.

    The contribution of resurgent sodium current to high-frequency firing in Purkinje neurons: an experimental and modeling study.

    J Neurosci. 2003; 23: 4899-4912

  • Inactivation and recovery of sodium currents in cerebellar Purkinje neurons: evidence for two mechanisms.

    Biophys J. 2001; 80: 729-737https://doi.org/10.1016/S0006-3495(01)76052-3

    • Cannon R.C.
    • Gleeson P.
    • Crook S.
    • Ganapathy G.
    • Marin B.
    • Piasini E.
    • et al.

    LEMS: a language for expressing complex biological models in concise and hierarchical form and its use in underpinning NeuroML 2.

    Front Neuroinform. 2014; 8https://doi.org/10.3389/fninf.2014.00079

    • Gleeson P.
    • Crook S.
    • Cannon R.C.
    • Hines M.L.
    • Billings G.O.
    • Farinella M.
    • et al.

    NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail.

    PLoS Comput Biol. 2010; 6e1000815https://doi.org/10.1371/journal.pcbi.1000815

  • Dura-Bernal S, Suter BA, Gleeson P, Cantarelli M, Quintana A, Rodriguez F, et al. NetPyNE, a tool for data-driven multiscale modeling of brain circuits. ELife n.d.;8. https://doi.org/10.7554/eLife.44494.

    • Gleeson P.
    • Cantarelli M.
    • Marin B.
    • Quintana A.
    • Earnshaw M.
    • Sadeh S.
    • et al.

    Open Source Brain: a collaborative resource for visualizing, analyzing, simulating, and developing standardized models of neurons and circuits.

    Neuron. 2019; 103 (): 395-411

    • Dyhrfjeld-Johnsen J.
    • Santhakumar V.
    • Morgan R.J.
    • Huerta R.
    • Tsimring L.
    • Soltesz I.

    Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data.

    J Neurophysiol. 2007; 97: 1566-1587https://doi.org/10.1152/jn.00950.2006

    • Jedlicka P.
    • Deller T.
    • Schwarzacher S.W.

    Computational modeling of GABAA receptor-mediated paired-pulse inhibition in the dentate gyrus.

    J Comput Neurosci. 2010; 29: 509-519https://doi.org/10.1007/s10827-010-0214-y

  • Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures.

    Proc Natl Acad Sci U S A. 2008; 105: 6179-6184https://doi.org/10.1073/pnas.0801372105

    • Santhakumar V.
    • Aradi I.
    • Soltesz I.

    Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography.

    J Neurophysiol. 2005; 93: 437-453https://doi.org/10.1152/jn.00777.2004

    • Tejada J.
    • Garcia-Cairasco N.
    • Roque A.C.

    Combined role of seizure-induced dendritic morphology alterations and spine loss in newborn granule cells with mossy fiber sprouting on the hyperexcitability of a computer model of the dentate gyrus.

    PLoS Comput Biol. 2014; 10e1003601https://doi.org/10.1371/journal.pcbi.1003601

  • Computational models of dentate gyrus with epilepsy-induced morphological alterations in granule cells.

    Epilepsy Behav. 2014; 38: 63-70https://doi.org/10.1016/j.yebeh.2014.02.007

    • Thomas E.A.
    • Reid C.A.
    • Berkovic S.F.
    • Petrou S.

    Prediction by modeling that epilepsy may be caused by very small functional changes in ion channels.

    Arch Neurol. 2009; 66: 1225-1232https://doi.org/10.1001/archneurol.2009.219

    • Thomas E.A.
    • Reid C.A.
    • Petrou S.

    Mossy fiber sprouting interacts with sodium channel mutations to increase dentate gyrus excitability.

    Epilepsia. 2010; 51: 136-145https://doi.org/10.1111/j.1528-1167.2009.02202.x

  • Network-specific mechanisms may explain the paradoxical effects of carbamazepine and phenytoin.

    Epilepsia. 2013; https://doi.org/10.1111/epi.12172

  • Comments are closed.