Contributions of electrophysiology for identifying cortical language systems in patients with epilepsy
Textbook of epilepsy surgery.
Informa Healthcare,
London2008
Epilepsy and the functional anatomy of the human brain.
Little Brown & Co,
Boston1954
Electrical stimulation of the human brain: perceptual and behavioral phenomena reported in the old and new literature.
Front Hum Neurosci. 2010; https://doi.org/10.3389/fnhum.2010.00046
The organization of language and the brain.
170. 1970: 940-944
Broca and Wernicke are dead, or moving past the classic model of language neurobiology.
Brain Lang. 2016; 162: 60-71https://doi.org/10.1016/j.bandl.2016.08.004
How localized are language brain areas? A review of Brodmann areas involvement in oral language.
Arch Clin Neuropsychol. 2016; 31: 112-122https://doi.org/10.1093/arclin/acv081
The maps problem and the mapping problem: two challenges for a cognitive neuroscience of speech and language.
Cogn Neuropsychol. 2012; 29: 34-55https://doi.org/10.1080/02643294.2012.710600
A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading.
NeuroImage. 2012; 62: 816-847https://doi.org/10.1016/j.neuroimage.2012.04.062
Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language.
Cognition. 2004; 92: 67-99https://doi.org/10.1016/j.cognition.2003.10.011
A new neural framework for visuospatial processing.
Nat Rev Neurosci. 2011; 12: 217-230https://doi.org/10.1038/nrn3008
The language network.
Curr Opin Neurobiol. 2013; 23: 250-254https://doi.org/10.1016/j.conb.2012.10.002
Cortical oscillations and speech processing: emerging computational principles and operations.
Nat Neurosci. 2012; 15: 511-517https://doi.org/10.1038/nn.3063
Dissociating parieto-frontal networks for phonological and semantic word decisions: a condition-and-perturb TMS study.
Cereb Cortex. 2016; 26: 2590-2601https://doi.org/10.1093/cercor/bhv092
Computational neuroanatomy of speech production.
Nat Rev Neurosci. 2012; 13: 135-145https://doi.org/10.1038/nrn3158
Left dorsal speech stream components and their contribution to phonological processing.
J Neurosci. 2015; 35: 1411-1422https://doi.org/10.1523/JNEUROSCI.0246-14.2015
Ventral and dorsal pathways for language.
Proc Natl Acad Sci. 2008; 105: 18035-18040https://doi.org/10.1073/pnas.0805234105
Basal temporal language area.
Brain. 1991; 114: 743-754https://doi.org/10.1093/brain/114.2.743
Brain regions underlying word finding difficulties in temporal lobe epilepsy.
Brain. 2009; 132: 2772-2784https://doi.org/10.1093/brain/awp083
Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies.
Cereb Cortex. 2009; 19: 2767-2796https://doi.org/10.1093/cercor/bhp055
The neural and computational bases of semantic cognition.
Nat Rev Neurosci. 2017; 18: 42-55https://doi.org/10.1038/nrn.2016.150
Words and objects at the tip of the left temporal lobe in primary progressive aphasia.
Brain. 2013; 136: 601-618https://doi.org/10.1093/brain/aws336
Understanding how we produce written words: lessons from the brain.
in: de Zubicaray G.I. Schiller N.O. Oxf. Handb. Neurolinguistics. Oxford University Press,
2019: 424-448https://doi.org/10.1093/oxfordhb/9780190672027.013.17
Neurobiology of language.
Academic Press,
San Francisco2016https://doi.org/10.1016/c2011-0-07351-9
Multi-factorial modulation of hemispheric specialization and plasticity for language in healthy and pathological conditions: a review.
Cortex. 2017; 86: 314-339https://doi.org/10.1016/j.cortex.2016.05.013
Characterization of atypical language activation patterns in focal epilepsy.
Ann Neurol. 2014; 75: 33-42https://doi.org/10.1002/ana.24015
Sub-centimeter language organization in the human temporal lobe.
Brain Lang. 2011; 117: 103-109https://doi.org/10.1016/j.bandl.2010.09.009
The peri-Sylvian cortical network underlying single word repetition revealed by electrocortical stimulation and direct neural recordings.
Brain Lang. 2019; 193: 58-72https://doi.org/10.1016/j.bandl.2016.06.001
Cortical language localization in left, dominant hemisphere: an electrical stimulation mapping investigation in 117 patients.
J Neurosurg. 1989; 71: 316-326https://doi.org/10.3171/jns.1989.71.3.0316
Clinical, functional, and neurophysiologic assessment of dysplastic cortical networks: implications for cortical functioning and surgical management.
Epilepsia. 2009; 50: 19-27https://doi.org/10.1111/j.1528-1167.2009.02291.x
Task-induced gamma band effect in type II focal cortical dysplasia: an exploratory study.
Epilepsy Behav. 2018; 85: 76-84https://doi.org/10.1016/j.yebeh.2018.05.017
Modular brain networks.
Annu Rev Psychol. 2016; 67: 613-640https://doi.org/10.1146/annurev-psych-122414-033634
Reliable individual-level neural markers of high-level language processing: a necessary precursor for relating neural variability to behavioral and genetic variability.
NeuroImage. 2016; 139: 74-93https://doi.org/10.1016/j.neuroimage.2016.05.073
Philadelphia1994
Choosing words: left hemisphere, right hemisphere, or both? Perspective on the lateralization of word retrieval.
Ann N Y Acad Sci. 2016; 1369: 111-131https://doi.org/10.1111/nyas.12993
The dorsal stream contribution to phonological retrieval in object naming.
Brain. 2012; 135: 3799-3814https://doi.org/10.1093/brain/aws300
Cerebral language lateralization: evidence from intracarotid amobarbital testing.
Neuropsychologia. 1990; 28: 831-838https://doi.org/10.1016/0028-3932(90)90007-B
Intracarotid injection of sodium amytal for the lateralization of cerebral speech dominance.
J Neurosurg. 1960; 17: 266-282https://doi.org/10.3171/jns.1960.17.2.0266
Determination of language dominance using functional MRI: a comparison with the Wada test.
Neurology. 1996; 46: 978-984https://doi.org/10.1212/WNL.46.4.978
Language dominance in neurologically normal and epilepsy subjects.
Brain. 1999; 122: 2033-2046https://doi.org/10.1093/brain/122.11.2033
Presurgical language fMRI in epilepsy: an introduction.
in: GPD Argyropoulos Transl. Neurosci. Speech Lang. Disord. Springer International Publishing,
Cham2020: 205-239https://doi.org/10.1007/978-3-030-35687-3_10
Can fMRI safely replace the Wada test for preoperative assessment of language lateralisation? A meta-analysis and systematic review.
J Neurol Neurosurg Psychiatry. 2014; 85: 581-588https://doi.org/10.1136/jnnp-2013-305659
Is functional MR imaging assessment of hemispheric language dominance as good as the Wada test?: a meta-analysis.
Radiology. 2011; 261: 446-455https://doi.org/10.1148/radiol.11101344
Language lateralization by fMRI and Wada testing in 229 patients with epilepsy: rates and predictors of discordance.
Epilepsia. 2013; 54: 314-322https://doi.org/10.1111/epi.12068
Clinical use of functional magnetic resonance imaging: reflections on the new CPT codes.
Neuropsychol Rev. 2007; 17: 189-191https://doi.org/10.1007/s11065-007-9022-1
Practice guideline summary: use of fMRI in the presurgical evaluation of patients with epilepsy: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology.
Neurology. 2017; 88: 395-402https://doi.org/10.1212/WNL.0000000000003532
FMRI is a valid noninvasive alternative to Wada testing.
Epilepsy Behav. 2011; 20: 214-222https://doi.org/10.1016/j.yebeh.2010.08.004
Direct brain recordings fuel advances in cognitive electrophysiology.
Trends Cogn Sci. 2010; 14: 162-171https://doi.org/10.1016/j.tics.2010.01.005
Relationship between task-related gamma oscillations and BOLD signal: new insights from combined fMRI and intracranial EEG.
Hum Brain Mapp. 2007; 28: 1368-1375https://doi.org/10.1002/hbm.20352
High-frequency neural activity and human cognition: past, present and possible future of intracranial EEG research.
Prog Neurobiol. 2012; 98: 279-301https://doi.org/10.1016/j.pneurobio.2012.06.008
Promises and limitations of human intracranial electroencephalography.
Nat Neurosci. 2018; 21: 474-483https://doi.org/10.1038/s41593-018-0108-2
Spatial–temporal functional mapping of language at the bedside with electrocorticography.
Neurology. 2016; 86: 1181-1189https://doi.org/10.1212/WNL.0000000000002525
Characterizing the Normal Developmental Trajectory of Expressive Language Lateralization Using Magnetoencephalography.
J Int Neuropsychol Soc. 2011; 17: 896-904https://doi.org/10.1017/S1355617711000932
Refined analysis of complex language representations by non-invasive neuroimaging techniques.
Br J Neurosurg. 2011; 25: 197-202https://doi.org/10.3109/02688697.2010.505986
Localization of Broca’s area using verb generation tasks in the MEG: Validation against fMRI.
Neurosci Lett. 2011; 490: 215-219https://doi.org/10.1016/j.neulet.2010.12.055
Optimizing estimation of hemispheric dominance for language using magnetic source imaging.
Brain Res. 2011; 1416: 44-50https://doi.org/10.1016/j.brainres.2011.08.017
Dynamics of hemispheric dominance for language assessed by magnetoencephalographic imaging.
Ann Neurol. 2012; 71: 668-686https://doi.org/10.1002/ana.23530
Decreased language laterality in tuberous sclerosis complex: A relationship between language dominance and tuber location as well as history of epilepsy.
Epilepsy Behav. 2012; 25: 36-41https://doi.org/10.1016/j.yebeh.2012.06.013
Spatiotemporal and frequency signatures of word recognition in the developing brain: A magnetoencephalographic study.
Brain Res. 2013; 1498: 20-32https://doi.org/10.1016/j.brainres.2013.01.001
Lateralized auditory brain function in children with normal reading ability and in children withdyslexia.
Neuropsychologia. 2013; 51: 633-641https://doi.org/10.1016/j.neuropsychologia.2012.12.015
Language Lateralization Represented by Spatiotemporal Mapping of Magnetoencephalography.
Am J Neuroradiol. 2013; 34: 558-563https://doi.org/10.3174/ajnr.A3233
Neural dynamics of inflectional and derivational processing in spoken word comprehension: laterality and automaticity.
Front Hum Neurosci. 2013; 7https://doi.org/10.3389/fnhum.2013.00759
The neural generators of the mismatch responses to Mandarin lexical tones: An MEG study.
Brain Res. 2014; 1582: 154-166https://doi.org/10.1016/j.brainres.2014.07.023
Age-related sex differences in language lateralization: A magnetoencephalography study in children.
Dev Psychol. 2014; 50: 2276-2284https://doi.org/10.1037/a0037470
Numbers are not like words: Different pathways for literacy and numeracy.
NeuroImage. 2015; 118: 79-89https://doi.org/10.1016/j.neuroimage.2015.06.021
Temporospatial identification of language-related cortical function by a combination of transcranial magnetic stimulation and magnetoencephalography.
Brain and Behavior. 2015; 5e00317https://doi.org/10.1002/brb3.317
Verbal memory and verbal fluency tasks used for language localization and lateralization during magnetoencephalography.
Epilepsy Res. 2016; 119: 1-9https://doi.org/10.1016/j.eplepsyres.2015.11.015
MEG language lateralization in partial epilepsy using dSPM of auditory event-related fields.
Epilepsy Behav. 2017; 73: 247-255https://doi.org/10.1016/j.yebeh.2017.06.002
Concordance between the Wada test and neuroimaging lateralization: Influence of imaging modality (fMRI and MEG) and patient experience.
Epilepsy Behav. 2018; 78: 155-160https://doi.org/10.1016/j.yebeh.2017.09.027
A simple magnetoencephalographic auditory paradigm may aid in confirming left-hemispheric language dominance in epilepsy patients.
PLoS ONE. 2018; 13e0200073https://doi.org/10.1371/journal.pone.0200073
MEG Assessment of Expressive Language in Children Evaluated for Epilepsy Surgery.
Brain Topogr. 2019; 32: 492-503https://doi.org/10.1007/s10548-019-00703-1
Children show hemispheric differences in the basic auditory response properties.
Hum Brain Mapp. 2019; 40: 2699-2710https://doi.org/10.1002/hbm.24553
MEG imaging of recurrent gliomas reveals functional plasticity of hemispheric language specialization.
Hum Brain Mapp. 2019; 40: 1082-1092https://doi.org/10.1002/hbm.24430
Mapping critical hubs of receptive and expressive language using MEG: A comparison against fMRI.
NeuroImage. 2019; 201116029https://doi.org/10.1016/j.neuroimage.2019.116029
Identification of language-specific brain activity using magnetoencephalography.
J Clin Exp Neuropsychol. 1998; 20: 706-722https://doi.org/10.1076/jcen.20.5.706.1127
Functional hemispheric asymmetry assessment in a visual language task using MEG.
Brain Topogr. 1998; 11: 57-65https://doi.org/10.1023/A:1022270620396
Atypical temporal lobe language representation: MEG and intraoperative stimulation mapping correlation.
Neuroreport. 1999; 10: 139-142https://doi.org/10.1097/00001756-199901180-00026
Mapping of expressive language cortex using magnetic source imaging.
Neurocase. 2001; 7: 419-422https://doi.org/10.1076/neur.7.5.419.16249
Magnetocephalography: a noninvasive alternative to the Wada procedure.
J Neurosurg. 2004; 100: 867-876https://doi.org/10.3171/jns.2004.100.5.0867
Language tasks used for the presurgical assessment of epileptic patients with MEG.
Epileptic Disord. 2010; 12: 97-108https://doi.org/10.1684/epd.2010.0314
MEG imaging of recurrent gliomas reveals functional plasticity of hemispheric language specialization.
Hum Brain Mapp. 2019; 40: 1082-1092https://doi.org/10.1002/hbm.24430
Spatiotemporal imaging of cortical activation during verb generation and picture naming.
NeuroImage. 2010; 50: 291-301https://doi.org/10.1016/j.neuroimage.2009.12.035
Response-locked brain dynamics of word production.
PLoS ONE. 2013; 8e58197https://doi.org/10.1371/journal.pone.0058197
Single word reading in developmental stutterers and fluent speakers.
Brain. 2000; 123: 1184-1202https://doi.org/10.1093/brain/123.6.1184
American Clinical MEG Society (ACMEGS) position statement #2: the value of magnetoencephalography (MEG)/magnetic source imaging (MSI) in noninvasive presurgical mapping of eloquent cortices of patients preparing for surgical interventions.
J Clin Neurophysiol. 2017; 34: 189-195https://doi.org/10.1097/WNP.0000000000000366
Cortical cartography reveals political and physical maps.
Epilepsia. 2014; 55: 633-637https://doi.org/10.1111/epi.12553
Electroencephalography, magnetoencephalography and source localization: their value in epilepsy.
Curr Opin Neurol. 2018; 31: 176-183https://doi.org/10.1097/WCO.0000000000000545
Variability in the analysis of a single neuroimaging dataset by many teams.
Nature. 2020; : 1-7https://doi.org/10.1038/s41586-020-2314-9
Presurgical intracranial investigations in epilepsy surgery.
Handb. Clin. Neurol. 2019; 161 (): 45-71https://doi.org/10.1016/B978-0-444-64142-7.00040-0
Specialization of left auditory cortex for speech perception in man depends on temporal coding.
Cereb Cortex. 1999; 9: 484-496https://doi.org/10.1093/cercor/9.5.484
Asymmetric function of theta and gamma activity in syllable processing: an intra-cortical study.
Front Psychol. 2012; 3https://doi.org/10.3389/fpsyg.2012.00248
Induced electrocorticographic gamma activity during auditory perception.
Clin Neurophysiol. 2001; 112: 565-582https://doi.org/10.1016/S1388-2457(00)00545-9
Electrocorticographic language mapping in children by high-gamma synchronization during spontaneous conversation: comparison with conventional electrical cortical stimulation.
Epilepsy Res. 2015; 110: 78-87https://doi.org/10.1016/j.eplepsyres.2014.11.013
Is electrocorticography-based language mapping ready to replace stimulation?.
Neurology. 2016; 86: 1174-1176https://doi.org/10.1212/WNL.0000000000002533
Electrocorticographic functional mapping identifies human cortex critical for auditory and visual naming.
NeuroImage. 2013; 69: 267-276https://doi.org/10.1016/j.neuroimage.2012.12.037
Presurgical language mapping using event-related high-gamma activity: the Detroit procedure.
Clin Neurophysiol. 2018; 129: 145-154https://doi.org/10.1016/j.clinph.2017.10.018
Gamma-oscillations modulated by picture naming and word reading: intracranial recording in epileptic patients.
Clin Neurophysiol. 2011; 122: 1929-1942https://doi.org/10.1016/j.clinph.2011.03.011
Estimating risk of word-finding problems in adults undergoing epilepsy surgery.
Neurology. 2016; 87: 2363-2369https://doi.org/10.1212/WNL.0000000000003378
Nomograms to predict naming decline after temporal lobe surgery in adults with epilepsy.
Neurology. 2018; 91: e2144-e2152https://doi.org/10.1212/WNL.0000000000006629
Naming outcomes of anterior temporal lobectomy in epilepsy patients: a systematic review of the literature.
Epilepsy Behav. 2012; 24: 194-198https://doi.org/10.1016/j.yebeh.2012.04.115
Naming decline after epilepsy surgery is associated with subjective language complaints.
Epilepsy Behav. 2019; 99: 106484https://doi.org/10.1016/j.yebeh.2019.106484
Presurgical language localization with visual naming associated ECoG high-gamma modulation in pediatric drug-resistant epilepsy.
Epilepsia. 2017; 58: 663-673https://doi.org/10.1111/epi.13708
Three- and four-dimensional mapping of speech and language in patients with epilepsy.
Brain. 2017; 140: 1351-1370https://doi.org/10.1093/brain/awx051
Intra-cranial recordings of brain activity during language production.
Front Psychol. 2011; 2: 1-12https://doi.org/10.3389/fpsyg.2011.00375
A model for visual naming based on spatiotemporal dynamics of ECoG high-gamma modulation.
Epilepsy Behav. 2019; 99: 106455https://doi.org/10.1016/j.yebeh.2019.106455
Estimating parallel processing in a language task using single-trial intracerebral electroencephalography.
Psychol Sci. 2017; 28: 414-426https://doi.org/10.1177/0956797616681296
Expanding the language network: direct contributions from the hippocampus.
Trends Cogn Sci. 2016; 20: 869-870https://doi.org/10.1016/j.tics.2016.10.006
High frequency gamma activity in the left hippocampus predicts visual object naming performance.
Brain Lang. 2014; 135: 104-114https://doi.org/10.1016/j.bandl.2014.05.007
Contextual modulation of hippocampal activity during picture naming.
Brain Lang. 2016; 159: 92-101https://doi.org/10.1016/j.bandl.2016.05.011
Direct brain recordings reveal hippocampal rhythm underpinnings of language processing.
Proc Natl Acad Sci. 2016; https://doi.org/10.1073/pnas.1603312113
Knowledge of language function and underlying neural networks gained from focal seizures and epilepsy surgery.
Brain Lang. 2019; 189: 20-33https://doi.org/10.1016/j.bandl.2018.12.007
Brain stimulation reveals critical auditory naming cortex.
Brain. 2005; 128: 2742-2749https://doi.org/10.1093/brain/awh621
Auditory and visual naming tests: normative and patient data for accuracy, response time, and tip-of-the-tongue.
J Int Neuropsychol Soc. 2003; 9: 479-489https://doi.org/10.1017/S135561770393013X
Gamma activity modulated by picture and auditory naming tasks: intracranial recording in patients with focal epilepsy.
Clin Neurophysiol. 2013; 124: 1737-1744https://doi.org/10.1016/j.clinph.2013.01.030
Intracranial electrophysiology in language research.
in: Oxf Handb Psycholinguist 2 Ed. 2018https://doi.org/10.1093/oxfordhb/9780198568971.001.0001
Spatiotemporal dynamics of word processing in the human brain.
Front Neurosci. 2007; 1https://doi.org/10.3389/neuro.01.1.1.014.2007
Cortical dynamics of word recognition.
Hum Brain Mapp. 2008; 29: 1215-1230https://doi.org/10.1002/hbm.20457
Cortical language mapping in epilepsy: a critical review.
Neuropsychol Rev. 2007; 17: 477-489https://doi.org/10.1007/s11065-007-9046-6
Electrical stimulation for seizure induction and functional mapping in stereoelectroencephalography.
J Clin Neurophysiol. 2016; 33: 511-521https://doi.org/10.1097/WNP.0000000000000313
Intracerebral stimulation of left and right ventral temporal cortex during object naming.
Brain Lang. 2017; 175: 71-76https://doi.org/10.1016/j.bandl.2017.09.003
Conduction aphasia elicited by stimulation of the left posterior superior temporal gyrus.
J Neurol Neurosurg Psychiatry. 1999; 66: 393-396https://doi.org/10.1136/jnnp.66.3.393
Function-specific high-probability “nodes” identified in posterior language cortex.
Epilepsia. 1999; 40: 575-583https://doi.org/10.1111/j.1528-1157.1999.tb05559.x
Electrocorticographic high-gamma language mapping: limitations of comparisons with electrocortical stimulation.
Epilepsy Behav. 2018; 82: 200-201https://doi.org/10.1016/j.yebeh.2018.02.017
Language mapping using high gamma electrocorticography, fMRI, and TMS versus electrocortical stimulation.
Clin Neurophysiol. 2016; 127: 1822-1836https://doi.org/10.1016/j.clinph.2015.11.017
Relationship between direct cortical stimulation and induced high-frequency activity for language mapping during SEEG recording.
J Neurosurg. 2020; : 1-11https://doi.org/10.3171/2020.2.JNS192751
Electrocorticographic high gamma activity versus electrical cortical stimulation mapping of naming.
Brain. 2005; 128: 1556-1570https://doi.org/10.1093/brain/awh491
ECoG high-gamma modulation versus electrical stimulation for presurgical language mapping.
Epilepsy Behav. 2018; 79: 26-33https://doi.org/10.1016/j.yebeh.2017.10.044
A lexical semantic hub for heteromodal naming in middle fusiform gyrus.
Brain. 2018; 141: 1-15https://doi.org/10.1093/brain/awy120
Object naming in epilepsy and epilepsy surgery.
Epilepsy Behav. 2015; 46: 27-33https://doi.org/10.1016/j.yebeh.2014.12.019
Seizure-associated aphasia has good lateralizing but poor localizing significance.
Epilepsia. 2017; 58: 1551-1555https://doi.org/10.1111/epi.13835
Postictal language function.
Epilepsy Behav. 2010; 19: 140-145https://doi.org/10.1016/j.yebeh.2010.06.028
Interictal and postictal language testing accurately lateralizes language dominant temporal lobe complex partial seizures.
Epilepsia. 2008; 49: 22-32https://doi.org/10.1111/j.1528-1167.2007.01209.x
The different patterns of seizure-induced aphasia in temporal lobe epilepsies.
Epilepsy Behav. 2018; 78: 256-264https://doi.org/10.1016/j.yebeh.2017.08.022
MIA: multi-patient intracerebral data analysis.
Neurotrack. 2020;
Comments are closed.