Contributions of electrophysiology for identifying cortical language systems in patients with epilepsy

  • Textbook of epilepsy surgery.

    Informa Healthcare,
    London2008

  • Epilepsy and the functional anatomy of the human brain.

    Little Brown & Co,
    Boston1954

  • Electrical stimulation of the human brain: perceptual and behavioral phenomena reported in the old and new literature.

    Front Hum Neurosci. 2010; https://doi.org/10.3389/fnhum.2010.00046

  • The organization of language and the brain.

    170. 1970: 940-944

  • Broca and Wernicke are dead, or moving past the classic model of language neurobiology.

    Brain Lang. 2016; 162: 60-71https://doi.org/10.1016/j.bandl.2016.08.004

    • Ardila A.
    • Bernal B.
    • Rosselli M.

    How localized are language brain areas? A review of Brodmann areas involvement in oral language.

    Arch Clin Neuropsychol. 2016; 31: 112-122https://doi.org/10.1093/arclin/acv081

  • The maps problem and the mapping problem: two challenges for a cognitive neuroscience of speech and language.

    Cogn Neuropsychol. 2012; 29: 34-55https://doi.org/10.1080/02643294.2012.710600

  • A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading.

    NeuroImage. 2012; 62: 816-847https://doi.org/10.1016/j.neuroimage.2012.04.062

  • Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language.

    Cognition. 2004; 92: 67-99https://doi.org/10.1016/j.cognition.2003.10.011

    • Kravitz D.J.
    • Saleem K.S.
    • Baker C.I.
    • Mishkin M.

    A new neural framework for visuospatial processing.

    Nat Rev Neurosci. 2011; 12: 217-230https://doi.org/10.1038/nrn3008

    • Friederici A.D.
    • Gierhan S.M.

    The language network.

    Curr Opin Neurobiol. 2013; 23: 250-254https://doi.org/10.1016/j.conb.2012.10.002

  • Cortical oscillations and speech processing: emerging computational principles and operations.

    Nat Neurosci. 2012; 15: 511-517https://doi.org/10.1038/nn.3063

    • Hartwigsen G.
    • Weigel A.
    • Schuschan P.
    • Siebner H.R.
    • Weise D.
    • Classen J.
    • et al.

    Dissociating parieto-frontal networks for phonological and semantic word decisions: a condition-and-perturb TMS study.

    Cereb Cortex. 2016; 26: 2590-2601https://doi.org/10.1093/cercor/bhv092

  • Computational neuroanatomy of speech production.

    Nat Rev Neurosci. 2012; 13: 135-145https://doi.org/10.1038/nrn3158

    • Murakami T.
    • Kell C.A.
    • Restle J.
    • Ugawa Y.
    • Ziemann U.

    Left dorsal speech stream components and their contribution to phonological processing.

    J Neurosci. 2015; 35: 1411-1422https://doi.org/10.1523/JNEUROSCI.0246-14.2015

    • Saur D.
    • Kreher B.W.
    • Schnell S.
    • Kummerer D.
    • Kellmeyer P.
    • Vry M.-S.
    • et al.

    Ventral and dorsal pathways for language.

    Proc Natl Acad Sci. 2008; 105: 18035-18040https://doi.org/10.1073/pnas.0805234105

    • Lüders H.O.
    • Lesser R.P.
    • Hahn J.
    • Dinner D.S.
    • Morris H.H.
    • Wyllie E.
    • et al.

    Basal temporal language area.

    Brain. 1991; 114: 743-754https://doi.org/10.1093/brain/114.2.743

    • Trébuchon-Da Fonseca A.
    • Guedj E.
    • Alario F.-X.
    • Laguitton V.
    • Mundler O.
    • Chauvel P.
    • et al.

    Brain regions underlying word finding difficulties in temporal lobe epilepsy.

    Brain. 2009; 132: 2772-2784https://doi.org/10.1093/brain/awp083

    • Binder J.R.
    • Desai R.H.
    • Graves W.W.
    • Conant L.L.

    Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies.

    Cereb Cortex. 2009; 19: 2767-2796https://doi.org/10.1093/cercor/bhp055

    • Lambon Ralph M.A.
    • Jefferies E.
    • Patterson K.
    • Rogers T.T.

    The neural and computational bases of semantic cognition.

    Nat Rev Neurosci. 2017; 18: 42-55https://doi.org/10.1038/nrn.2016.150

    • Mesulam M.-M.
    • Wieneke C.
    • Hurley R.
    • Rademaker A.
    • Thompson C.K.
    • Weintraub S.
    • et al.

    Words and objects at the tip of the left temporal lobe in primary progressive aphasia.

    Brain. 2013; 136: 601-618https://doi.org/10.1093/brain/aws336

  • Understanding how we produce written words: lessons from the brain.

    in: de Zubicaray G.I. Schiller N.O. Oxf. Handb. Neurolinguistics. Oxford University Press,
    2019: 424-448https://doi.org/10.1093/oxfordhb/9780190672027.013.17

  • Neurobiology of language.

    Academic Press,
    San Francisco2016https://doi.org/10.1016/c2011-0-07351-9

    • Tzourio-Mazoyer N.
    • Perrone-Bertolotti M.
    • Jobard G.
    • Mazoyer B.
    • Baciu M.

    Multi-factorial modulation of hemispheric specialization and plasticity for language in healthy and pathological conditions: a review.

    Cortex. 2017; 86: 314-339https://doi.org/10.1016/j.cortex.2016.05.013

    • Berl M.M.
    • Zimmaro L.A.
    • Khan O.I.
    • Dustin I.
    • Ritzl E.
    • Duke E.S.
    • et al.

    Characterization of atypical language activation patterns in focal epilepsy.

    Ann Neurol. 2014; 75: 33-42https://doi.org/10.1002/ana.24015

    • Flinker A.
    • Chang E.F.
    • Barbaro N.M.
    • Berger M.S.
    • Knight R.T.

    Sub-centimeter language organization in the human temporal lobe.

    Brain Lang. 2011; 117: 103-109https://doi.org/10.1016/j.bandl.2010.09.009

    • Leonard M.K.
    • Cai R.
    • Babiak M.C.
    • Ren A.
    • Chang E.F.

    The peri-Sylvian cortical network underlying single word repetition revealed by electrocortical stimulation and direct neural recordings.

    Brain Lang. 2019; 193: 58-72https://doi.org/10.1016/j.bandl.2016.06.001

    • Ojemann G.
    • Ojemann J.
    • Lettich E.
    • Berger M.

    Cortical language localization in left, dominant hemisphere: an electrical stimulation mapping investigation in 117 patients.

    J Neurosurg. 1989; 71: 316-326https://doi.org/10.3171/jns.1989.71.3.0316

  • Clinical, functional, and neurophysiologic assessment of dysplastic cortical networks: implications for cortical functioning and surgical management.

    Epilepsia. 2009; 50: 19-27https://doi.org/10.1111/j.1528-1167.2009.02291.x

    • Souci S.
    • Petton M.
    • Jung J.
    • Bourdillon P.
    • Bouet R.
    • Richard-Mornas A.
    • et al.

    Task-induced gamma band effect in type II focal cortical dysplasia: an exploratory study.

    Epilepsy Behav. 2018; 85: 76-84https://doi.org/10.1016/j.yebeh.2018.05.017

  • Modular brain networks.

    Annu Rev Psychol. 2016; 67: 613-640https://doi.org/10.1146/annurev-psych-122414-033634

  • Reliable individual-level neural markers of high-level language processing: a necessary precursor for relating neural variability to behavioral and genetic variability.

    NeuroImage. 2016; 139: 74-93https://doi.org/10.1016/j.neuroimage.2016.05.073

  • Eling P. Reader in the history of aphasia: from Franz Gall to Norman Geschwind. Amsterdam. J. Benjamins Pub. Co,
    Philadelphia1994
    • Riès S.
    • Dronkers N.F.
    • Knight R.T.

    Choosing words: left hemisphere, right hemisphere, or both? Perspective on the lateralization of word retrieval.

    Ann N Y Acad Sci. 2016; 1369: 111-131https://doi.org/10.1111/nyas.12993

    • Schwartz M.F.
    • Faseyitan O.
    • Kim J.
    • Coslett H.B.

    The dorsal stream contribution to phonological retrieval in object naming.

    Brain. 2012; 135: 3799-3814https://doi.org/10.1093/brain/aws300

    • Loring D.W.
    • Meador K.J.
    • Lee G.P.
    • Murro A.M.
    • Smith J.R.
    • Flanigin H.F.
    • et al.

    Cerebral language lateralization: evidence from intracarotid amobarbital testing.

    Neuropsychologia. 1990; 28: 831-838https://doi.org/10.1016/0028-3932(90)90007-B

  • Intracarotid injection of sodium amytal for the lateralization of cerebral speech dominance.

    J Neurosurg. 1960; 17: 266-282https://doi.org/10.3171/jns.1960.17.2.0266

    • Binder J.R.
    • Swanson S.J.
    • Hammeke T.A.
    • Morris G.L.
    • Mueller W.M.
    • Fischer M.
    • et al.

    Determination of language dominance using functional MRI: a comparison with the Wada test.

    Neurology. 1996; 46: 978-984https://doi.org/10.1212/WNL.46.4.978

    • Springer J.A.
    • Binder J.R.
    • Hammeke T.A.
    • Swanson S.J.
    • Frost J.A.
    • Bellgowan P.S.F.
    • et al.

    Language dominance in neurologically normal and epilepsy subjects.

    Brain. 1999; 122: 2033-2046https://doi.org/10.1093/brain/122.11.2033

    • Benjamin C.F.A.
    • Gkiatis K.
    • Matsopoulos G.K.
    • Garganis K.

    Presurgical language fMRI in epilepsy: an introduction.

    in: GPD Argyropoulos Transl. Neurosci. Speech Lang. Disord. Springer International Publishing,
    Cham2020: 205-239https://doi.org/10.1007/978-3-030-35687-3_10

    • Bauer P.R.
    • Reitsma J.B.
    • Houweling B.M.
    • Ferrier C.H.
    • Ramsey N.F.

    Can fMRI safely replace the Wada test for preoperative assessment of language lateralisation? A meta-analysis and systematic review.

    J Neurol Neurosurg Psychiatry. 2014; 85: 581-588https://doi.org/10.1136/jnnp-2013-305659

    • Dym R.J.
    • Burns J.
    • Freeman K.
    • Lipton M.L.

    Is functional MR imaging assessment of hemispheric language dominance as good as the Wada test?: a meta-analysis.

    Radiology. 2011; 261: 446-455https://doi.org/10.1148/radiol.11101344

    • Janecek J.K.
    • Swanson S.J.
    • Sabsevitz D.S.
    • Hammeke T.A.
    • Raghavan M,.E.
    • Rozman M.
    • et al.

    Language lateralization by fMRI and Wada testing in 229 patients with epilepsy: rates and predictors of discordance.

    Epilepsia. 2013; 54: 314-322https://doi.org/10.1111/epi.12068

    • Bobholz J.A.
    • Rao S.M.
    • Saykin A.J.
    • Pliskin N.

    Clinical use of functional magnetic resonance imaging: reflections on the new CPT codes.

    Neuropsychol Rev. 2007; 17: 189-191https://doi.org/10.1007/s11065-007-9022-1

    • Szaflarski J.P.
    • Gloss D.
    • Binder J.R.
    • Gaillard W.D.
    • Golby A.J.
    • Holland S.K.
    • et al.

    Practice guideline summary: use of fMRI in the presurgical evaluation of patients with epilepsy: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology.

    Neurology. 2017; 88: 395-402https://doi.org/10.1212/WNL.0000000000003532

  • FMRI is a valid noninvasive alternative to Wada testing.

    Epilepsy Behav. 2011; 20: 214-222https://doi.org/10.1016/j.yebeh.2010.08.004

  • Direct brain recordings fuel advances in cognitive electrophysiology.

    Trends Cogn Sci. 2010; 14: 162-171https://doi.org/10.1016/j.tics.2010.01.005

    • Lachaux J.-P.
    • Fonlupt P.
    • Kahane P.
    • Minotti L.
    • Hoffmann D.
    • Bertrand O.
    • et al.

    Relationship between task-related gamma oscillations and BOLD signal: new insights from combined fMRI and intracranial EEG.

    Hum Brain Mapp. 2007; 28: 1368-1375https://doi.org/10.1002/hbm.20352

    • Lachaux J.-P.
    • Axmacher N.
    • Mormann F.
    • Halgren E.
    • Crone N.E.

    High-frequency neural activity and human cognition: past, present and possible future of intracranial EEG research.

    Prog Neurobiol. 2012; 98: 279-301https://doi.org/10.1016/j.pneurobio.2012.06.008

  • Promises and limitations of human intracranial electroencephalography.

    Nat Neurosci. 2018; 21: 474-483https://doi.org/10.1038/s41593-018-0108-2

    • Wang Y.
    • Fifer M.S.
    • Flinker A.
    • Korzeniewska A.
    • Cervenka M.C.
    • Anderson W.S.
    • et al.

    Spatial–temporal functional mapping of language at the bedside with electrocorticography.

    Neurology. 2016; 86: 1181-1189https://doi.org/10.1212/WNL.0000000000002525

    • Kadis D.S.
    • Pang E.W.
    • Mills T.
    • Taylor M.J.
    • McAndrews M.P.
    • Smith M.L.

    Characterizing the Normal Developmental Trajectory of Expressive Language Lateralization Using Magnetoencephalography.

    J Int Neuropsychol Soc. 2011; 17: 896-904https://doi.org/10.1017/S1355617711000932

    • Ota T.
    • Kamada K.
    • Kawai K.
    • Yumoto M.
    • Aoki S.
    • Saito N.

    Refined analysis of complex language representations by non-invasive neuroimaging techniques.

    Br J Neurosurg. 2011; 25: 197-202https://doi.org/10.3109/02688697.2010.505986

    • Pang E.W.
    • Wang F.
    • Malone M.
    • Kadis D.S.
    • Donner E.J.

    Localization of Broca’s area using verb generation tasks in the MEG: Validation against fMRI.

    Neurosci Lett. 2011; 490: 215-219https://doi.org/10.1016/j.neulet.2010.12.055

    • Passaro A.D.
    • Rezaie R.
    • Moser D.C.
    • Li Z.
    • Dias N.
    • Papanicolaou A.C.

    Optimizing estimation of hemispheric dominance for language using magnetic source imaging.

    Brain Res. 2011; 1416: 44-50https://doi.org/10.1016/j.brainres.2011.08.017

    • Findlay A.M.
    • Ambrose J.B.
    • DA Cahn‐Weiner
    • Houde J.F.
    • Honma S.
    • Hinkley L.B.N.
    • et al.

    Dynamics of hemispheric dominance for language assessed by magnetoencephalographic imaging.

    Ann Neurol. 2012; 71: 668-686https://doi.org/10.1002/ana.23530

    • Gallagher A.
    • Tanaka N.
    • Suzuki N.
    • Liu H.
    • Thiele E.A.
    • Stufflebeam S.M.

    Decreased language laterality in tuberous sclerosis complex: A relationship between language dominance and tuber location as well as history of epilepsy.

    Epilepsy Behav. 2012; 25: 36-41https://doi.org/10.1016/j.yebeh.2012.06.013

    • Gummadavelli A.
    • Wang Y.
    • Guo X.
    • Pardos M.
    • Chu H.
    • Liu Y.
    • et al.

    Spatiotemporal and frequency signatures of word recognition in the developing brain: A magnetoencephalographic study.

    Brain Res. 2013; 1498: 20-32https://doi.org/10.1016/j.brainres.2013.01.001

    • Johnson B.W.
    • McArthur G.
    • Hautus M.
    • Reid M.
    • Brock J.
    • Castles A.
    • et al.

    Lateralized auditory brain function in children with normal reading ability and in children withdyslexia.

    Neuropsychologia. 2013; 51: 633-641https://doi.org/10.1016/j.neuropsychologia.2012.12.015

    • Tanaka N.
    • Liu H.
    • Reinsberger C.
    • Madsen J.R.
    • Bourgeois B.F.
    • Dworetzky B.A.
    • et al.

    Language Lateralization Represented by Spatiotemporal Mapping of Magnetoencephalography.

    Am J Neuroradiol. 2013; 34: 558-563https://doi.org/10.3174/ajnr.A3233

    • Whiting C.M.
    • Marslen-Wilson W.D.
    • Shtyrov Y.

    Neural dynamics of inflectional and derivational processing in spoken word comprehension: laterality and automaticity.

    Front Hum Neurosci. 2013; 7https://doi.org/10.3389/fnhum.2013.00759

    • Hsu C.-H.
    • Lin S.-K.
    • Hsu Y.-Y.
    • Lee C.-Y.

    The neural generators of the mismatch responses to Mandarin lexical tones: An MEG study.

    Brain Res. 2014; 1582: 154-166https://doi.org/10.1016/j.brainres.2014.07.023

    • Yu V.Y.
    • MacDonald M.J.
    • Oh A.
    • Hua G.N.
    • De Nil L.F.
    • Pang E.W.

    Age-related sex differences in language lateralization: A magnetoencephalography study in children.

    Dev Psychol. 2014; 50: 2276-2284https://doi.org/10.1037/a0037470

    • Carreiras M.
    • Monahan P.J.
    • Lizarazu M.
    • Duñabeitia J.A.
    • Molinaro N.

    Numbers are not like words: Different pathways for literacy and numeracy.

    NeuroImage. 2015; 118: 79-89https://doi.org/10.1016/j.neuroimage.2015.06.021

    • Shinshi M.
    • Yanagisawa T.
    • Hirata M.
    • Goto T.
    • Sugata H.
    • Araki T.
    • et al.

    Temporospatial identification of language-related cortical function by a combination of transcranial magnetic stimulation and magnetoencephalography.

    Brain and Behavior. 2015; 5e00317https://doi.org/10.1002/brb3.317

    • Pirmoradi M.
    • Jemel B.
    • Gallagher A.
    • Tremblay J.
    • D’Hondt F.
    • Nguyen D.K.
    • et al.

    Verbal memory and verbal fluency tasks used for language localization and lateralization during magnetoencephalography.

    Epilepsy Res. 2016; 119: 1-9https://doi.org/10.1016/j.eplepsyres.2015.11.015

    • Raghavan M.
    • Li Z.
    • Carlson C.
    • Anderson C.T.
    • Stout J.
    • Sabsevitz D.S.
    • et al.

    MEG language lateralization in partial epilepsy using dSPM of auditory event-related fields.

    Epilepsy Behav. 2017; 73: 247-255https://doi.org/10.1016/j.yebeh.2017.06.002

    • Kemp S.
    • Prendergast G.
    • Karapanagiotidis T.
    • Baker G.
    • Kelly T.P.
    • Patankar T.
    • et al.

    Concordance between the Wada test and neuroimaging lateralization: Influence of imaging modality (fMRI and MEG) and patient experience.

    Epilepsy Behav. 2018; 78: 155-160https://doi.org/10.1016/j.yebeh.2017.09.027

    • Wilenius J.
    • Lehtinen H.
    • Paetau R.
    • Salmelin R.
    • Kirveskari E.

    A simple magnetoencephalographic auditory paradigm may aid in confirming left-hemispheric language dominance in epilepsy patients.

    PLoS ONE. 2018; 13e0200073https://doi.org/10.1371/journal.pone.0200073

    • Foley E.
    • Cross J.H.
    • Thai N.J.
    • Walsh A.R.
    • Bill P.
    • Furlong P.
    • et al.

    MEG Assessment of Expressive Language in Children Evaluated for Epilepsy Surgery.

    Brain Topogr. 2019; 32: 492-503https://doi.org/10.1007/s10548-019-00703-1

    • Parviainen T.
    • Helenius P.
    • Salmelin R.

    Children show hemispheric differences in the basic auditory response properties.

    Hum Brain Mapp. 2019; 40: 2699-2710https://doi.org/10.1002/hbm.24553

    • Traut T.
    • Sardesh N.
    • Bulubas L.
    • Findlay A.
    • Honma S.M.
    • Mizuiri D.
    • et al.

    MEG imaging of recurrent gliomas reveals functional plasticity of hemispheric language specialization.

    Hum Brain Mapp. 2019; 40: 1082-1092https://doi.org/10.1002/hbm.24430

    • Youssofzadeh V.
    • Babajani-Feremi A.

    Mapping critical hubs of receptive and expressive language using MEG: A comparison against fMRI.

    NeuroImage. 2019; 201116029https://doi.org/10.1016/j.neuroimage.2019.116029

    • Simos P.G.
    • Breier J.I.
    • Zouridakis G.
    • Papanicolaou A.C.

    Identification of language-specific brain activity using magnetoencephalography.

    J Clin Exp Neuropsychol. 1998; 20: 706-722https://doi.org/10.1076/jcen.20.5.706.1127

    • Zouridakis G.
    • Simos P.G.
    • Breier J.I.
    • Papanicolaou A.C.

    Functional hemispheric asymmetry assessment in a visual language task using MEG.

    Brain Topogr. 1998; 11: 57-65https://doi.org/10.1023/A:1022270620396

    • Simos P.G.
    • Breier J.I.
    • Maggio W.W.
    • Gormley W.B.
    • Zouridakis G.
    • Willmore L.J.
    • et al.

    Atypical temporal lobe language representation: MEG and intraoperative stimulation mapping correlation.

    Neuroreport. 1999; 10: 139-142https://doi.org/10.1097/00001756-199901180-00026

    • Castillo E.M.
    • Simos P.G.
    • Venkataraman V.
    • Breier J.I.
    • Wheless J.W.
    • Papanicolaou A.C.

    Mapping of expressive language cortex using magnetic source imaging.

    Neurocase. 2001; 7: 419-422https://doi.org/10.1076/neur.7.5.419.16249

    • Papanicolaou A.C.
    • Simos P.G.
    • Castillo E.M.
    • Breier J.I.
    • Sarkari S.
    • Pataraia E.
    • et al.

    Magnetocephalography: a noninvasive alternative to the Wada procedure.

    J Neurosurg. 2004; 100: 867-876https://doi.org/10.3171/jns.2004.100.5.0867

    • Pirmoradi M.
    • Béland R.
    • Nguyen D.K.
    • Bacon B.A.
    • Lassonde M.

    Language tasks used for the presurgical assessment of epileptic patients with MEG.

    Epileptic Disord. 2010; 12: 97-108https://doi.org/10.1684/epd.2010.0314

    • Traut T.
    • Sardesh N.
    • Bulubas L.
    • Findlay A.
    • Honma S.M.
    • Mizuiri D.
    • et al.

    MEG imaging of recurrent gliomas reveals functional plasticity of hemispheric language specialization.

    Hum Brain Mapp. 2019; 40: 1082-1092https://doi.org/10.1002/hbm.24430

    • Edwards E.
    • Nagarajan S.S.
    • Dalal S.S.
    • Canolty R.T.
    • Kirsch H.E.
    • Barbaro N.M.
    • et al.

    Spatiotemporal imaging of cortical activation during verb generation and picture naming.

    NeuroImage. 2010; 50: 291-301https://doi.org/10.1016/j.neuroimage.2009.12.035

    • Riès S.
    • Janssen N.
    • Burle B.
    • Alario F.-X.

    Response-locked brain dynamics of word production.

    PLoS ONE. 2013; 8e58197https://doi.org/10.1371/journal.pone.0058197

    • Salmelin R.
    • Schnitzler A.
    • Schmitz F.
    • Freund H.-J.

    Single word reading in developmental stutterers and fluent speakers.

    Brain. 2000; 123: 1184-1202https://doi.org/10.1093/brain/123.6.1184

    • Bagić A.I.
    • Bowyer S.M.
    • Kirsch H.E.
    • Funke M.E.
    • Burgess R.C.

    American Clinical MEG Society (ACMEGS) position statement #2: the value of magnetoencephalography (MEG)/magnetic source imaging (MSI) in noninvasive presurgical mapping of eloquent cortices of patients preparing for surgical interventions.

    J Clin Neurophysiol. 2017; 34: 189-195https://doi.org/10.1097/WNP.0000000000000366

    • Loring D.W.
    • Gaillard W.D.
    • Bookheimer S.Y.
    • Meador K.J.
    • Ojemann J.G.

    Cortical cartography reveals political and physical maps.

    Epilepsia. 2014; 55: 633-637https://doi.org/10.1111/epi.12553

  • Electroencephalography, magnetoencephalography and source localization: their value in epilepsy.

    Curr Opin Neurol. 2018; 31: 176-183https://doi.org/10.1097/WCO.0000000000000545

    • Botvinik-Nezer R.
    • Holzmeister F.
    • Camerer C.F.
    • Dreber A.
    • Huber J.
    • Johannesson M.
    • et al.

    Variability in the analysis of a single neuroimaging dataset by many teams.

    Nature. 2020; : 1-7https://doi.org/10.1038/s41586-020-2314-9

    • Chauvel P.
    • Gonzalez-Martinez J.
    • Bulacio J.

    Presurgical intracranial investigations in epilepsy surgery.

    Handb. Clin. Neurol. 2019; 161 (): 45-71https://doi.org/10.1016/B978-0-444-64142-7.00040-0

    • Liégeois-Chauvel C.
    • de Graaf J.B.
    • Laguitton V.
    • Chauvel P.

    Specialization of left auditory cortex for speech perception in man depends on temporal coding.

    Cereb Cortex. 1999; 9: 484-496https://doi.org/10.1093/cercor/9.5.484

    • Morillon B.
    • Liégeois-Chauvel C.
    • Arnal L.H.
    • Bénar C.G.
    • Giraud A.-L.

    Asymmetric function of theta and gamma activity in syllable processing: an intra-cortical study.

    Front Psychol. 2012; 3https://doi.org/10.3389/fpsyg.2012.00248

    • Crone N.E.
    • Boatman D.
    • Gordon B.
    • Hao L.

    Induced electrocorticographic gamma activity during auditory perception.

    Clin Neurophysiol. 2001; 112: 565-582https://doi.org/10.1016/S1388-2457(00)00545-9

    • Arya R.
    • Wilson J.A.
    • Vannest J.
    • Byars A.W.
    • Greiner H.M.
    • Buroker J.
    • et al.

    Electrocorticographic language mapping in children by high-gamma synchronization during spontaneous conversation: comparison with conventional electrical cortical stimulation.

    Epilepsy Res. 2015; 110: 78-87https://doi.org/10.1016/j.eplepsyres.2014.11.013

  • Is electrocorticography-based language mapping ready to replace stimulation?.

    Neurology. 2016; 86: 1174-1176https://doi.org/10.1212/WNL.0000000000002533

    • Cervenka M.C.
    • Corines J.
    • Boatman-Reich D.F.
    • Eloyan A.
    • Sheng X.
    • Franaszczuk P.J.
    • et al.

    Electrocorticographic functional mapping identifies human cortex critical for auditory and visual naming.

    NeuroImage. 2013; 69: 267-276https://doi.org/10.1016/j.neuroimage.2012.12.037

    • Kambara T.
    • Sood S.
    • Alqatan Z.
    • Klingert C.
    • Ratnam D.
    • Hayakawa A.
    • et al.

    Presurgical language mapping using event-related high-gamma activity: the Detroit procedure.

    Clin Neurophysiol. 2018; 129: 145-154https://doi.org/10.1016/j.clinph.2017.10.018

    • Wu H.C.
    • Nagasawa T.
    • Brown E.C.
    • Juhasz C.
    • Rothermel R.
    • Hoechstetter K.
    • et al.

    Gamma-oscillations modulated by picture naming and word reading: intracranial recording in epileptic patients.

    Clin Neurophysiol. 2011; 122: 1929-1942https://doi.org/10.1016/j.clinph.2011.03.011

    • Busch R.M.
    • Floden D.P.
    • Prayson B.
    • Chapin J.S.
    • Kim K.H.
    • Ferguson L.
    • et al.

    Estimating risk of word-finding problems in adults undergoing epilepsy surgery.

    Neurology. 2016; 87: 2363-2369https://doi.org/10.1212/WNL.0000000000003378

    • Busch R.M.
    • Hogue O.
    • Kattan M.W.
    • Hamberger M.
    • Drane D.L.
    • Hermann B.
    • et al.

    Nomograms to predict naming decline after temporal lobe surgery in adults with epilepsy.

    Neurology. 2018; 91: e2144-e2152https://doi.org/10.1212/WNL.0000000000006629

    • Ives-Deliperi V.L.
    • Butler J.T.

    Naming outcomes of anterior temporal lobectomy in epilepsy patients: a systematic review of the literature.

    Epilepsy Behav. 2012; 24: 194-198https://doi.org/10.1016/j.yebeh.2012.04.115

    • Miller M.
    • Hogue O.
    • Hogan T.
    • Busch R.M.

    Naming decline after epilepsy surgery is associated with subjective language complaints.

    Epilepsy Behav. 2019; 99: 106484https://doi.org/10.1016/j.yebeh.2019.106484

    • Arya R.
    • Wilson J.A.
    • Fujiwara H.
    • Rozhkov L.
    • Leach J.L.
    • Byars A.W.
    • et al.

    Presurgical language localization with visual naming associated ECoG high-gamma modulation in pediatric drug-resistant epilepsy.

    Epilepsia. 2017; 58: 663-673https://doi.org/10.1111/epi.13708

    • Nakai Y.
    • Jeong J.W.
    • Brown E.C.
    • Rothermel R.
    • Kojima K.
    • Kambara T.
    • et al.

    Three- and four-dimensional mapping of speech and language in patients with epilepsy.

    Brain. 2017; 140: 1351-1370https://doi.org/10.1093/brain/awx051

    • Llorens A.
    • Trébuchon A.
    • Liégeois-Chauvel C.
    • Alario F.-X.

    Intra-cranial recordings of brain activity during language production.

    Front Psychol. 2011; 2: 1-12https://doi.org/10.3389/fpsyg.2011.00375

    • Arya R.
    • Babajani-Feremi A.
    • Byars A.W.
    • Vannest J.
    • Greiner H.M.
    • Wheless J.W.
    • et al.

    A model for visual naming based on spatiotemporal dynamics of ECoG high-gamma modulation.

    Epilepsy Behav. 2019; 99: 106455https://doi.org/10.1016/j.yebeh.2019.106455

    • Dubarry A.-S.
    • Llorens A.
    • Trébuchon A.
    • Carron R.
    • Liégeois-Chauvel C.
    • Bénar C.G.
    • et al.

    Estimating parallel processing in a language task using single-trial intracerebral electroencephalography.

    Psychol Sci. 2017; 28: 414-426https://doi.org/10.1177/0956797616681296

  • Expanding the language network: direct contributions from the hippocampus.

    Trends Cogn Sci. 2016; 20: 869-870https://doi.org/10.1016/j.tics.2016.10.006

    • Hamamé C.M.
    • Alario F.-X.
    • Llorens A.
    • Liégeois-Chauvel C.
    • Trébuchon-Da Fonseca A.

    High frequency gamma activity in the left hippocampus predicts visual object naming performance.

    Brain Lang. 2014; 135: 104-114https://doi.org/10.1016/j.bandl.2014.05.007

    • Llorens A.
    • Dubarry A.-S.
    • Trébuchon-Da Fonseca A.
    • Chauvel P.
    • Alario F.-X.
    • Liégeois-Chauvel C.

    Contextual modulation of hippocampal activity during picture naming.

    Brain Lang. 2016; 159: 92-101https://doi.org/10.1016/j.bandl.2016.05.011

    • Piai V.
    • Anderson K.L.
    • Lin J.J.
    • Dewar C.
    • Parvizi J.
    • Dronkers N.F.
    • et al.

    Direct brain recordings reveal hippocampal rhythm underpinnings of language processing.

    Proc Natl Acad Sci. 2016; https://doi.org/10.1073/pnas.1603312113

  • Knowledge of language function and underlying neural networks gained from focal seizures and epilepsy surgery.

    Brain Lang. 2019; 189: 20-33https://doi.org/10.1016/j.bandl.2018.12.007

    • Hamberger M.J.
    • Seidel W.T.
    • Mckhann G.M.
    • Perrine K.
    • Goodman R.R.

    Brain stimulation reveals critical auditory naming cortex.

    Brain. 2005; 128: 2742-2749https://doi.org/10.1093/brain/awh621

    • Hamberger M.J.
    • Seidel W.T.

    Auditory and visual naming tests: normative and patient data for accuracy, response time, and tip-of-the-tongue.

    J Int Neuropsychol Soc. 2003; 9: 479-489https://doi.org/10.1017/S135561770393013X

    • Kojima K.
    • Brown E.C.
    • Matsuzaki N.
    • Rothermel R.
    • Fuerst D.
    • Shah A.
    • et al.

    Gamma activity modulated by picture and auditory naming tasks: intracranial recording in patients with focal epilepsy.

    Clin Neurophysiol. 2013; 124: 1737-1744https://doi.org/10.1016/j.clinph.2013.01.030

    • Flinker A.
    • Piai V.
    • Knight R.

    Intracranial electrophysiology in language research.

    in: Oxf Handb Psycholinguist 2 Ed. 2018https://doi.org/10.1093/oxfordhb/9780198568971.001.0001

    • Canolty R.T.
    • Soltani M.
    • Dalal S.S.
    • Edwards E.
    • Dronkers N.F.
    • Nagarajan S.S.
    • et al.

    Spatiotemporal dynamics of word processing in the human brain.

    Front Neurosci. 2007; 1https://doi.org/10.3389/neuro.01.1.1.014.2007

    • Mainy N.
    • Jung J.
    • Baciu M.
    • Kahane P.
    • Schoendorff B.
    • Minotti L.
    • et al.

    Cortical dynamics of word recognition.

    Hum Brain Mapp. 2008; 29: 1215-1230https://doi.org/10.1002/hbm.20457

  • Cortical language mapping in epilepsy: a critical review.

    Neuropsychol Rev. 2007; 17: 477-489https://doi.org/10.1007/s11065-007-9046-6

  • Electrical stimulation for seizure induction and functional mapping in stereoelectroencephalography.

    J Clin Neurophysiol. 2016; 33: 511-521https://doi.org/10.1097/WNP.0000000000000313

    • Bédos Ulvin L.
    • Jonas J.
    • Brissart H.
    • Colnat-Coulbois S.
    • Thiriaux A.
    • Vignal J.-P.
    • et al.

    Intracerebral stimulation of left and right ventral temporal cortex during object naming.

    Brain Lang. 2017; 175: 71-76https://doi.org/10.1016/j.bandl.2017.09.003

  • Conduction aphasia elicited by stimulation of the left posterior superior temporal gyrus.

    J Neurol Neurosurg Psychiatry. 1999; 66: 393-396https://doi.org/10.1136/jnnp.66.3.393

    • Schwartz T.H.
    • Devinsky O.
    • Doyle W.
    • Perrine K.

    Function-specific high-probability “nodes” identified in posterior language cortex.

    Epilepsia. 1999; 40: 575-583https://doi.org/10.1111/j.1528-1157.1999.tb05559.x

  • Electrocorticographic high-gamma language mapping: limitations of comparisons with electrocortical stimulation.

    Epilepsy Behav. 2018; 82: 200-201https://doi.org/10.1016/j.yebeh.2018.02.017

    • Babajani-Feremi A.
    • Narayana S.
    • Rezaie R.
    • Choudhri A.F.
    • Fulton S.P.
    • Boop F.A.
    • et al.

    Language mapping using high gamma electrocorticography, fMRI, and TMS versus electrocortical stimulation.

    Clin Neurophysiol. 2016; 127: 1822-1836https://doi.org/10.1016/j.clinph.2015.11.017

    • Cuisenier P.
    • Testud B.
    • Minotti L.
    • El Bouzaïdi Tiali S.
    • Martineau L.
    • Job A.-S.
    • et al.

    Relationship between direct cortical stimulation and induced high-frequency activity for language mapping during SEEG recording.

    J Neurosurg. 2020; : 1-11https://doi.org/10.3171/2020.2.JNS192751

    • Sinai A.
    • Bowers C.W.
    • Crainiceanu C.M.
    • Boatman D.
    • Gordon B.
    • Lesser R.P.
    • et al.

    Electrocorticographic high gamma activity versus electrical cortical stimulation mapping of naming.

    Brain. 2005; 128: 1556-1570https://doi.org/10.1093/brain/awh491

    • Arya R.
    • Horn P.S.
    • Crone N.E.

    ECoG high-gamma modulation versus electrical stimulation for presurgical language mapping.

    Epilepsy Behav. 2018; 79: 26-33https://doi.org/10.1016/j.yebeh.2017.10.044

    • Forseth K.J.
    • Kadipasaoglu C.M.
    • Conner C.R.
    • Hickok G.
    • Knight R.T.
    • Tandon N.

    A lexical semantic hub for heteromodal naming in middle fusiform gyrus.

    Brain. 2018; 141: 1-15https://doi.org/10.1093/brain/awy120

  • Object naming in epilepsy and epilepsy surgery.

    Epilepsy Behav. 2015; 46: 27-33https://doi.org/10.1016/j.yebeh.2014.12.019

    • Loesch A.M.
    • Steger H.
    • Losher C.
    • Hartl E.
    • Rémi J.
    • Vollmar C.
    • et al.

    Seizure-associated aphasia has good lateralizing but poor localizing significance.

    Epilepsia. 2017; 58: 1551-1555https://doi.org/10.1111/epi.13835

  • Postictal language function.

    Epilepsy Behav. 2010; 19: 140-145https://doi.org/10.1016/j.yebeh.2010.06.028

    • Ramirez M.J.
    • Schefft B.K.
    • Howe S.R.
    • Hwa-Shain Y.
    • Privitera M.D.

    Interictal and postictal language testing accurately lateralizes language dominant temporal lobe complex partial seizures.

    Epilepsia. 2008; 49: 22-32https://doi.org/10.1111/j.1528-1167.2007.01209.x

    • Trébuchon A.
    • Lambert I.
    • Guisiano B.
    • McGonigal A.
    • Perot C.
    • Bonini F.
    • et al.

    The different patterns of seizure-induced aphasia in temporal lobe epilepsies.

    Epilepsy Behav. 2018; 78: 256-264https://doi.org/10.1016/j.yebeh.2017.08.022

  • MIA: multi-patient intracerebral data analysis.

    Neurotrack. 2020;

  • Comments are closed.