GABAergic interneurons in epilepsy: More than a simple change in inhibition

    • Noebels J.L.
    • Avoli M.
    • Rogawski M.A.
    • Olsen R.W.
    • Delgado-Escueta A.V.

    Jasper’s basic mechanisms of the epilepsies.

    4th ed. 2012

    • Engel J.

    Excitation and inhibition in epilepsy.

    Can J Neurol Sci. 1996; 23: 167-174

    • Dichter M.A.
    • Ayala G.F.

    Cellular mechanisms of epilepsy: a status report.

    Science. 1987; 237: 157-164

    • Galarreta M.
    • Hestrin S.

    Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex.

    Nat Neurosci. 1998; 1: 587-594

    • Nelson S.B.
    • Turrigiano G.G.

    Synaptic depression: a key player in the cortical balancing act.

    Nat Neurosci. 1998; 1: 539-541

    • Tasker J.G.
    • Dudek F.E.

    Electrophysiology of GABA-mediated synaptic transmission and possible roles in epilepsy.

    Neurochem Res. 1991; 16: 251-262

    • Timofeev I.
    • Grenier F.
    • Steriade M.

    Contribution of intrinsic neuronal factors in the generation of cortically driven electrographic seizures.

    J Neurophysiol. 2004; 92: 1133-1143

    • Shao L.R.
    • Habela C.W.
    • Stafstrom C.E.

    Pediatric epilepsy mechanisms: expanding the paradigm of excitation/inhibition imbalance.

    Children (Basel). 2019; 6

    • Bui A.D.
    • Nguyen T.M.
    • Limouse C.
    • Kim H.K.
    • Szabo G.G.
    • Felong S.
    • et al.

    Dentate gyrus mossy cells control spontaneous convulsive seizures and spatial memory.

    Science. 2018; 359: 787-790

    • Olsen R.W.
    • Avoli M.

    GABA and epileptogenesis.

    Epilepsia. 1997; 38: 399-407

    • Treiman D.M.

    GABAergic mechanisms in epilepsy.

    Epilepsia. 2001; 42: 8-12

    • Pelkey K.A.
    • Chittajallu R.
    • Craig M.T.
    • Tricoire L.
    • Wester J.C.
    • McBain C.J.

    Hippocampal GABAergic inhibitory interneurons.

    Physiol Rev. 2017; 97: 1619-1747

    • Ye H.
    • Kaszuba S.

    Inhibitory or excitatory? Optogenetic interrogation of the functional roles of GABAergic interneurons in epileptogenesis.

    J Biomed Sci. 2017; 24: 93

    • Kelsom C.
    • Lu W.

    Development and specification of GABAergic cortical interneurons.

    Cell Biosci. 2013; 3: 19

    • Liu Y.Q.
    • Yu F.
    • Liu W.H.
    • He X.H.
    • Peng B.W.

    Dysfunction of hippocampal interneurons in epilepsy.

    Neurosci Bull. 2014; 30: 985-998

    • Zhu Q.
    • Ke W.
    • He Q.
    • Wang X.
    • Zheng R.
    • Li T.
    • et al.

    Laminar distribution of neurochemically-identified interneurons and cellular co-expression of molecular markers in epileptic human cortex.

    Neurosci Bull. 2018; 34: 992-1006

    • Butt S.J.
    • Fuccillo M.
    • Nery S.
    • Noctor S.
    • Kriegstein A.
    • Corbin J.G.
    • et al.

    The temporal and spatial origins of cortical interneurons predict their physiological subtype.

    Neuron. 2005; 48: 591-604

    • Wonders C.
    • Anderson S.A.

    Cortical interneurons and their origins.

    Neuroscientist. 2005; 11: 199-205

    • Gelman D.M.
    • Marin O.

    Generation of interneuron diversity in the mouse cerebral cortex.

    Eur J Neurosci. 2010; 31: 2136-2141

    • Tricoire L.
    • Pelkey K.A.
    • Erkkila B.E.
    • Jeffries B.W.
    • Yuan X.
    • McBain C.J.

    A blueprint for the spatiotemporal origins of mouse hippocampal interneuron diversity.

    J Neurosci. 2011; 31: 10948-10970

    • Letinic K.
    • Zoncu R.
    • Rakic P.

    Origin of GABAergic neurons in the human neocortex.

    Nature. 2002; 417: 645-649

    • Arshad A.
    • Vose L.R.
    • Vinukonda G.
    • Hu F.
    • Yoshikawa K.
    • Csiszar A.
    • et al.

    Extended production of cortical interneurons into the third trimester of human gestation.

    Cereb Cortex. 2016; 26: 2242-2256

    • Mann E.O.
    • Paulsen O.

    Role of GABAergic inhibition in hippocampal network oscillations.

    Trends Neurosci. 2007; 30: 343-349

    • Freund T.F.
    • Buzsaki G.

    Interneurons of the hippocampus.

    Hippocampus. 1996; 6: 347-470

    • Klausberger T.
    • Somogyi P.

    Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations.

    Science. 2008; 321: 53-57

    • Miles R.
    • Tóth K.
    • Gulyás A.I.
    • Hájos N.
    • Freund T.F.

    Differences between somatic and dendritic inhibition in the hippocampus.

    Neuron. 1996; 16: 815-823

    • Chen J.L.
    • Nedivi E.

    Highly specific structural plasticity of inhibitory circuits in the adult neocortex.

    Neuroscientist. 2013; 19: 384-393

    • Ledri M.
    • Madsen M.G.
    • Nikitidou L.
    • Kirik D.
    • Kokaia M.

    Global optogenetic activation of inhibitory interneurons during epileptiform activity.

    J Neurosci. 2014; 34: 3364-3377

    • Cobb S.R.
    • Buhl E.H.
    • Halasy K.
    • Paulsen O.
    • Somogyi P.

    Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons.

    Nature. 1995; 378: 75-78

    • Miles R.
    • Poncer J.C.

    Paired recordings from neurones.

    Curr Opin Neurobiol. 1996; 6: 387-394

    • Marchionni I.
    • Maccaferri G.

    Quantitative dynamics and spatial profile of perisomatic GABAergic input during epileptiform synchronization in the CA1 hippocampus.

    J Physiol. 2009; 587: 5691-5708

    • Howard A.
    • Tamas G.
    • Soltesz I.

    Lighting the chandelier: new vistas for axo-axonic cells.

    Trends Neurosci. 2005; 28: 310-316

    • Contreras A.
    • Hines D.J.
    • Hines R.M.

    Molecular specialization of GABAergic synapses on the soma and axon in cortical and hippocampal circuit function and dysfunction.

    Front Mol Neurosci. 2019; 12: 154

    • Ylinen A.
    • Bragin A.
    • Nádasdy Z.
    • Jandó G.
    • Szabó I.
    • Sik A.
    • et al.

    Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms.

    J Neurosci. 1995; 15: 30-46

    • Mody I.
    • Pearce R.A.

    Diversity of inhibitory neurotransmission through GABA(A) receptors.

    Trends Neurosci. 2004; 27: 569-575

    • Mann E.O.
    • Suckling J.M.
    • Hajos N.
    • Greenfield S.A.
    • Paulsen O.

    Perisomatic feedback inhibition underlies cholinergically induced fast network oscillations in the rat hippocampus in vitro.

    Neuron. 2005; 45: 105-117

    • Tukker J.J.
    • Fuentealba P.
    • Hartwich K.
    • Somogyi P.
    • Klausberger T.

    Cell type-specific tuning of hippocampal interneuron firing during gamma oscillations in vivo.

    J Neurosci. 2007; 27: 8184-8189

    • Kawaguchi Y.
    • Kubota Y.

    GABAergic cell subtypes and their synaptic connections in rat frontal cortex.

    Cereb Cortex. 1997; 7: 476-486

    • Klausberger T.

    GABAergic interneurons targeting dendrites of pyramidal cells in the CA1 area of the hippocampus.

    Eur J Neurosci. 2009; 30: 947-957

    • Leão R.N.
    • Mikulovic S.
    • Leão K.E.
    • Munguba H.
    • Gezelius H.
    • Enjin A.
    • et al.

    OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons.

    Nat Neurosci. 2012; 15: 1524-1530

    • Müller C.
    • Remy S.

    Dendritic inhibition mediated by O-LM and bistratified interneurons in the hippocampus.

    Front Synaptic Neurosci. 2014; 6: 23

    • Kann O.

    The interneuron energy hypothesis: implications for brain disease.

    Neurobiol Dis. 2016; 90: 75-85

    • Lodato S.
    • Arlotta P.

    Generating neuronal diversity in the mammalian cerebral cortex.

    Annu Rev Cell Dev Biol. 2015; 31: 699-720

    • Cohen I.
    • Navarro V.
    • Clemenceau S.
    • Baulac M.
    • Miles R.

    On the origin of interictal activity in human temporal lobe epilepsy in vitro.

    Science. 2002; 298: 1418-1421

    • Khalilov I.
    • Le Van Quyen M.
    • Gozlan H.
    • Ben-Ari Y.

    Epileptogenic actions of GABA and fast oscillations in the developing hippocampus.

    Neuron. 2005; 48: 787-796

    • Konopaske G.T.
    • Sweet R.A.
    • Wu Q.
    • Sampson A.
    • Lewis D.A.

    Regional specificity of chandelier neuron axon terminal alterations in schizophrenia.

    Neuroscience. 2006; 138: 189-196

    • Traub R.D.
    • Pais I.
    • Bibbig A.
    • Lebeau F.E.
    • Buhl E.H.
    • Garner H.
    • et al.

    Transient depression of excitatory synapses on interneurons contributes to epileptiform bursts during gamma oscillations in the mouse hippocampal slice.

    J Neurophysiol. 2005; 94: 1225-1235

    • de la Prida L.M.
    • Huberfeld G.

    Inhibition and oscillations in the human brain tissue in vitro.

    Neurobiol Dis. 2019; 125: 198-210

    • Calcagnotto M.E.
    • Paredes M.F.
    • Tihan T.
    • Barbaro N.M.
    • Baraban S.C.

    Dysfunction of synaptic inhibition in epilepsy associated with focal cortical dysplasia.

    J Neurosci. 2005; 25: 9649-9657

    • Marín O.

    Interneuron dysfunction in psychiatric disorders.

    Nat Rev Neurosci. 2012; 13: 107-120

    • Nakazawa K.
    • Zsiros V.
    • Jiang Z.
    • Nakao K.
    • Kolata S.
    • Zhang S.
    • et al.

    GABAergic interneuron origin of schizophrenia pathophysiology.

    Neuropharmacology. 2012; 62: 1574-1583

    • Zhu X.
    • Yao Y.
    • Li X.
    • Dong J.
    • Zhang A.

    Alteration of GABAergic signaling is associated with anxiety-like behavior in temporal lobe epilepsy mice.

    Prog Neuropsychopharmacol Biol Psychiatry. 2019; 93: 141-148

    • Tomassy G.S.
    • Morello N.
    • Calcagno E.
    • Giustetto M.

    Developmental abnormalities of cortical interneurons precede symptoms onset in a mouse model of Rett syndrome.

    J Neurochem. 2014; 131: 115-127

    • Kato M.
    • Dobyns W.B.

    X-linked lissencephaly with abnormal genitalia as a tangential migration disorder causing intractable epilepsy: proposal for a new term, “interneuronopathy”.

    J Child Neurol. 2005; 20: 392-397

    • Sebe J.Y.
    • Baraban S.C.

    The promise of an interneuron-based cell therapy for epilepsy.

    Dev Neurobiol. 2011; 71: 107-117

    • Paterno R.
    • Casalia M.
    • Baraban S.C.

    Interneuron deficits in neurodevelopmental disorders: implications for disease pathology and interneuron-based therapies.

    Eur J Paediatr Neurol. 2019; ([In Press])https://doi.org/10.1016/j.ejpn.2019.12.015

    • Katsarou A.M.
    • Moshé S.L.
    • Galanopoulou A.S.
    • Galanopoulou

    Interneuronophaties and their role in the early life epilepsies and neurodevelopmental disorders.

    Epilepsia Open. 2017; 2: 284-306

    • Guidotti A.
    • Auta J.
    • Davis J.M.
    • Di-Giorgi-Gerevini V.
    • Dwivedi Y.
    • Grayson D.R.
    • et al.

    Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study.

    Arch Gen Psychiatry. 2000; 57: 1061-1069

    • Kalus P.
    • Bondzio J.
    • Federspiel A.
    • Müller T.J.
    • Zuschratter W.

    Cell-type specific alterations of cortical interneurons in schizophrenic patients.

    Neuroreport. 2002; 13: 713-717

    • Prince D.A.
    • Parada I.
    • Scalise K.
    • Graber K.
    • Jin X.
    • Shen F.

    Epilepsy following cortical injury: cellular and molecular mechanisms as targets for potential prophylaxis.

    Epilepsia. 2009; 50: 30-40

    • Daskalakis Z.J.
    • Christensen B.K.
    • Chen R.
    • Fitzgerald P.B.
    • Zipursky R.B.
    • Kapur S.

    Evidence for impaired cortical inhibition in schizophrenia using transcranial magnetic stimulation.

    Arch Gen Psychiatry. 2002; 59: 347-354

    • Spencer K.M.
    • Nestor P.G.
    • Perlmutter R.
    • Niznikiewicz M.A.
    • Klump M.C.
    • Frumin M.
    • et al.

    Neural synchrony indexes disordered perception and cognition in schizophrenia.

    Proc Natl Acad Sci U S A. 2004; 101: 17288-17293

    • Nemeroff C.B.

    The role of GABA in the pathophysiology and treatment of anxiety disorders.

    Psychopharmacol Bull. 2003; 37: 133-146

    • Romariz S.A.
    • Paiva DeS
    • Valente M.F.
    • Barnabé G.F.
    • Frussa-Filho R.
    • Barbosa-Silva R.C.
    • et al.

    Long-lasting anxiolytic effect of neural precursor cells freshly prepared but not neurosphere-derived cell transplantation in newborn rats.

    BMC Neurosci. 2014; 15: 94

    • Blatt G.J.
    • Fitzgerald C.M.
    • Guptill J.T.
    • Booker A.B.
    • Kemper T.L.
    • Bauman M.L.

    Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study.

    J Autism Dev Disord. 2001; 31: 537-543

    • Fatemi S.H.
    • Halt A.R.
    • Stary J.M.
    • Kanodia R.
    • Schulz S.C.
    • Realmuto G.R.

    Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices.

    Biol Psychiatry. 2002; 52: 805-810

    • Bozzi Y.
    • Provenzano G.
    • Casarosa S.

    Neurobiological bases of autism-epilepsy comorbidity: a focus on excitation/inhibition imbalance.

    Eur J Neurosci. 2018; 47: 534-548

    • Gogolla N.
    • Leblanc J.J.
    • Quast K.B.
    • Südhof T.C.
    • Fagiolini M.
    • Hensch T.K.

    Common circuit defect of excitatory-inhibitory balance in mouse models of autism.

    J Neurodev Disord. 2009; 1: 172-181

    • Rubenstein J.L.
    • Merzenich M.M.

    Model of autism: increased ratio of excitation/inhibition in key neural systems.

    Genes Brain Behav. 2003; 2: 255-267

    • Rubinstein M.
    • Han S.
    • Tai C.
    • Westenbroek R.E.
    • Hunker A.
    • Scheuer T.
    • et al.

    Dissecting the phenotypes of Dravet syndrome by gene deletion.

    Brain. 2015; 138: 2219-2233

    • Sgadò P.
    • Genovesi S.
    • Kalinovsky A.
    • Zunino G.
    • Macchi F.
    • Allegra M.
    • et al.

    Loss of GABAergic neurons in the hippocampus and cerebral cortex of engrailed-2 null mutant mice: implications for autism spectrum disorders.

    Exp Neurol. 2013; 247: 496-505

    • Fontes-Dutra M.
    • Santos-Terra J.
    • Deckmann I.
    • Brum Schwingel G.
    • Della-Flora Nunes G.
    • Hirsch M.M.
    • et al.

    Resveratrol prevents cellular and behavioral sensory alterations in the animal model of autism induced by valproic acid.

    Front Synaptic Neurosci. 2018; 10: 9

    • Canitano R.

    Epilepsy in autism spectrum disorders.

    Eur Child Adolesc Psychiatry. 2007; 16: 61-66

    • Deonna T.
    • Roulet E.

    Autistic spectrum disorder: evaluating a possible contributing or causal role of epilepsy.

    Epilepsia. 2006; 47: 79-82

    • Parmeggiani A.
    • Barcia G.
    • Posar A.
    • Raimondi E.
    • Santucci M.
    • Scaduto M.C.

    Epilepsy and EEG paroxysmal abnormalities in autism spectrum disorders.

    Brain Dev. 2010; 32: 783-789

    • Jensen F.E.

    Epilepsy as a spectrum disorder: implications from novel clinical and basic neuroscience.

    Epilepsia. 2011; 52: 1-6

    • Uhlhaas P.J.
    • Singer W.

    Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology.

    Neuron. 2006; 52: 155-168

    • Buzsáki G.
    • Silva F.L.

    High frequency oscillations in the intact brain.

    Prog Neurobiol. 2012; 98: 241-249

    • Cardin J.A.
    • Carlén M.
    • Meletis K.
    • Knoblich U.
    • Zhang F.
    • Deisseroth K.
    • et al.

    Driving fast-spiking cells induces gamma rhythm and controls sensory responses.

    Nature. 2009; 459: 663-667

    • Middleton S.
    • Jalics J.
    • Kispersky T.
    • Lebeau F.E.
    • Roopun A.K.
    • Kopell N.J.
    • et al.

    NMDA receptor-dependent switching between different gamma rhythm-generating microcircuits in entorhinal cortex.

    Proc Natl Acad Sci U S A. 2008; 105: 18572-18577

    • Whittington M.A.
    • Traub R.D.

    Interneuron diversity series: inhibitory interneurons and network oscillations in vitro.

    Trends Neurosci. 2003; 26: 676-682

    • Veit J.
    • Hakim R.
    • Jadi M.P.
    • Sejnowski T.J.
    • Adesnik H.

    Cortical gamma band synchronization through somatostatin interneurons.

    Nat Neurosci. 2017; 20: 951-959

    • Espinosa N.
    • Alonso A.
    • Lara-Vasquez A.
    • Fuentealba P.

    Basal forebrain somatostatin cells differentially regulate local gamma oscillations and functionally segregate motor and cognitive circuits.

    Sci Rep. 2019; 9: 2570

    • Stark E.
    • Roux L.
    • Eichler R.
    • Senzai Y.
    • Royer S.
    • Buzsáki G.

    Pyramidal cell-interneuron interactions underlie hippocampal ripple oscillations.

    Neuron. 2014; 83: 467-480

    • Bartos M.
    • Vida I.
    • Frotscher M.
    • Meyer A.
    • Monyer H.
    • Geiger J.R.
    • et al.

    Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks.

    Proc Natl Acad Sci U S A. 2002; 99: 13222-13227

    • Sun Q.Q.
    • Huguenard J.R.
    • Prince D.A.

    Reorganization of barrel circuits leads to thalamically-evoked cortical epileptiform activity.

    Thalamus Relat Syst. 2005; 3: 261-273

    • Paz J.T.
    • Bryant A.S.
    • Peng K.
    • Fenno L.
    • Yizhar O.
    • Frankel W.N.
    • et al.

    A new mode of corticothalamic transmission revealed in the gria4(−/−) model of absence epilepsy.

    Nat Neurosci. 2011; 14: 1167-1173

    • Paz J.T.
    • Huguenard J.R.

    Microcircuits and their interactions in epilepsy: is the focus out of focus?.

    Nat Neurosci. 2015; 18: 351-359

    • Sessolo M.
    • Marcon I.
    • Bovetti S.
    • Losi G.
    • Cammarota M.
    • Ratto G.M.
    • et al.

    Parvalbumin-positive inhibitory interneurons oppose propagation but favor generation of focal epileptiform activity.

    J Neurosci. 2015; 35: 9544-9557

    • Drexel M.
    • Romanov R.A.
    • Wood J.
    • Weger S.
    • Heilbronn R.
    • Wulff P.
    • et al.

    Selective silencing of hippocampal parvalbumin interneurons induces development of recurrent spontaneous limbic seizures in mice.

    J Neurosci. 2017; 37: 8166-8179

    • Moore A.K.
    • Weible A.P.
    • Balmer T.S.
    • Trussell L.O.
    • Wehr M.

    Rapid rebalancing of excitation and inhibition by cortical circuitry.

    Neuron. 2018; 97: 1341-1355.e6

    • Cobos I.
    • Calcagnotto M.E.
    • Vilaythong A.J.
    • Thwin M.T.
    • Noebels J.L.
    • Baraban S.C.
    • et al.

    Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy.

    Nat Neurosci. 2005; 8: 1059-1068

    • Barinka F.
    • Druga R.
    • Marusic P.
    • Krsek P.
    • Zamecnik J.

    Calretinin immunoreactivity in focal cortical dysplasias and in non-malformed epileptic cortex.

    Epilepsy Res. 2010; 88: 76-86

    • Wittner L.
    • Eross L.
    • Czirják S.
    • Halász P.
    • Freund T.F.
    • Maglóczky Z.

    Surviving CA1 pyramidal cells receive intact perisomatic inhibitory input in the human epileptic hippocampus.

    Brain. 2005; 128: 138-152

    • Tóth K.
    • Eross L.
    • Vajda J.
    • Halász P.
    • Freund T.F.
    • Maglóczky Z.

    Loss and reorganization of calretinin-containing interneurons in the epileptic human hippocampus.

    Brain. 2010; 133: 2763-2777

    • Dinocourt C.
    • Petanjek Z.
    • Freund T.F.
    • Ben-Ari Y.
    • Esclapez M.

    Loss of interneurons innervating pyramidal cell dendrites and axon initial segments in the CA1 region of the hippocampus following pilocarpine-induced seizures.

    J Comp Neurol. 2003; 459: 407-425

    • Papp P.
    • Kovács Z.
    • Szocsics P.
    • Juhász G.
    • Maglóczky Z.

    Alterations in hippocampal and cortical densities of functionally different interneurons in rat models of absence epilepsy.

    Epilepsy Res. 2018; 145: 40-50

    • Huusko N.
    • Römer C.
    • Ndode-Ekane X.E.
    • Lukasiuk K.
    • Pitkänen A.

    Loss of hippocampal interneurons and epileptogenesis: a comparison of two animal models of acquired epilepsy.

    Brain Struct Funct. 2015; 220: 153-191

    • Sun C.
    • Mtchedlishvili Z.
    • Bertram E.H.
    • Erisir A.
    • Kapur J.

    Selective loss of dentate hilar interneurons contributes to reduced synaptic inhibition of granule cells in an electrical stimulation-based animal model of temporal lobe epilepsy.

    J Comp Neurol. 2007; 500: 876-893

    • Maglóczky Z.
    • Freund T.F.

    Impaired and repaired inhibitory circuits in the epileptic human hippocampus.

    Trends Neurosci. 2005; 28: 334-340

    • Robbins R.J.
    • Brines M.L.
    • Kim J.H.
    • Adrian T.
    • de Lanerolle N.
    • Welsh S.
    • et al.

    A selective loss of somatostatin in the hippocampus of patients with temporal lobe epilepsy.

    Ann Neurol. 1991; 29: 325-332

    • Sundstrom L.E.
    • Brana C.
    • Gatherer M.
    • Mepham J.
    • Rougier A.

    Somatostatin- and neuropeptide Y-synthesizing neurones in the fascia dentata of humans with temporal lobe epilepsy.

    Brain. 2001; 124: 688-697

    • Kobayashi M.
    • Buckmaster P.S.

    Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy.

    J Neurosci. 2003; 23: 2440-2452

    • Cossart R.
    • Dinocourt C.
    • Hirsch J.C.
    • Merchan-Perez A.
    • De Felipe J.
    • Ben-Ari Y.
    • et al.

    Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy.

    Nat Neurosci. 2001; 4: 52-62

    • Wittner L.
    • Maglóczky Z.

    Synaptic reorganization of the perisomatic inhibitory network in hippocampi of temporal lobe epileptic patients.

    Biomed Res Int. 2017; 20177154295

    • Wittner L.
    • Maglóczky Z.
    • Borhegyi Z.
    • Halász P.
    • Tóth S.
    • Eross L.
    • et al.

    Preservation of perisomatic inhibitory input of granule cells in the epileptic human dentate gyrus.

    Neuroscience. 2001; 108: 587-600

    • Peng Z.
    • Zhang N.
    • Wei W.
    • Huang C.S.
    • Cetina Y.
    • Otis T.S.
    • et al.

    A reorganized GABAergic circuit in a model of epilepsy: evidence from optogenetic labeling and stimulation of somatostatin interneurons.

    J Neurosci. 2013; 33: 14392-14405

    • Zhang W.
    • Yamawaki R.
    • Wen X.
    • Uhl J.
    • Diaz J.
    • Prince D.A.
    • et al.

    Surviving hilar somatostatin interneurons enlarge, sprout axons, and form new synapses with granule cells in a mouse model of temporal lobe epilepsy.

    J Neurosci. 2009; 29: 14247-14256

    • Wick Z.C.
    • Leintz C.H.
    • Xamonthiene C.
    • Huang B.H.
    • Krook-Magnuson E.

    Axonal sprouting in commissurally projecting parvalbumin-expressing interneurons.

    J Neurosci Res. 2017; 95: 2336-2344

    • de Lanerolle N.C.
    • Kim J.H.
    • Robbins R.J.
    • Spencer D.D.

    Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy.

    Brain Res. 1989; 495: 387-395

    • Fujiwara-Tsukamoto Y.
    • Isomura Y.
    • Kaneda K.
    • Takada M.

    Synaptic interactions between pyramidal cells and interneurone subtypes during seizure-like activity in the rat hippocampus.

    J Physiol. 2004; 557: 961-979

    • Steriade M.
    • Timofeev I.
    • Grenier F.

    Natural waking and sleep states: a view from inside neocortical neurons.

    J Neurophysiol. 2001; 85: 1969-1985

    • Timofeev I.
    • Grenier F.
    • Steriade M.

    Impact of intrinsic properties and synaptic factors on the activity of neocortical networks in vivo.

    J Physiol Paris. 2000; 94: 343-355

    • Timofeev I.
    • Grenier F.
    • Steriade M.

    Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study.

    Proc Natl Acad Sci U S A. 2001; 98: 1924-1929

    • Haider B.
    • Häusser M.
    • Carandini M.

    Inhibition dominates sensory responses in the awake cortex.

    Nature. 2013; 493: 97-100

    • Steriade M.

    Impact of network activities on neuronal properties in corticothalamic systems.

    J Neurophysiol. 2001; 86: 1-39

    • Kuki T.
    • Fujihara K.
    • Miwa H.
    • Tamamaki N.
    • Yanagawa Y.
    • Mushiake H.

    Contribution of parvalbumin and somatostatin-expressing GABAergic neurons to slow oscillations and the balance in beta-gamma oscillations across cortical layers.

    Front Neural Circuits. 2015; 9: 6

    • Yekhlef L.
    • Breschi G.L.
    • Lagostena L.
    • Russo G.
    • Taverna S.

    Selective activation of parvalbumin- or somatostatin-expressing interneurons triggers epileptic seizurelike activity in mouse medial entorhinal cortex.

    J Neurophysiol. 2015; 113: 1616-1630

    • Luhmann H.J.
    • Kirischuk S.
    • Sinning A.
    • Kilb W.

    Early GABAergic circuitry in the cerebral cortex.

    Curr Opin Neurobiol. 2014; 26: 72-78

    • Ben-Ari Y.
    • Cherubini E.
    • Corradetti R.
    • Gaiarsa J.L.

    Giant synaptic potentials in immature rat CA3 hippocampal neurones.

    J Physiol. 1989; 416: 303-325

    • Ben-Ari Y.
    • Gaiarsa J.L.
    • Tyzio R.
    • Khazipov R.

    GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations.

    Physiol Rev. 2007; 87: 1215-1284

    • Ben-Ari Y.

    Excitatory actions of gaba during development: the nature of the nurture.

    Nat Rev Neurosci. 2002; 3: 728-739

    • Allène C.
    • Cattani A.
    • Ackman J.B.
    • Bonifazi P.
    • Aniksztejn L.
    • Ben-Ari Y.
    • et al.

    Sequential generation of two distinct synapse-driven network patterns in developing neocortex.

    J Neurosci. 2008; 28: 12851-12863

    • Nardou R.
    • Ferrari D.C.
    • Ben-Ari Y.

    Mechanisms and effects of seizures in the immature brain.

    Semin Fetal Neonatal Med. 2013; 18: 175-184

    • Toyoda I.
    • Fujita S.
    • Thamattoor A.K.
    • Buckmaster P.S.

    Unit activity of hippocampal interneurons before spontaneous seizures in an animal model of temporal lobe epilepsy.

    J Neurosci. 2015; 35: 6600-6618

    • Khoshkhoo S.
    • Vogt D.
    • Sohal V.S.

    Dynamic, cell-type-specific roles for GABAergic interneurons in a mouse model of Optogenetically inducible seizures.

    Neuron. 2017; 93: 291-298

    • McCormick D.A.
    • Williamson A.

    Convergence and divergence of neurotransmitter action in human cerebral cortex.

    Proc Natl Acad Sci U S A. 1989; 86: 8098-8102

    • Huguenard J.R.
    • Prince D.A.

    Intrathalamic rhythmicity studied in vitro: nominal T-current modulation causes robust antioscillatory effects.

    J Neurosci. 1994; 14: 5485-5502

    • Ulrich D.
    • Huguenard J.R.

    Gamma-aminobutyric acid type B receptor-dependent burst-firing in thalamic neurons: a dynamic clamp study.

    Proc Natl Acad Sci U S A. 1996; 93: 13245-13249

    • Hsieh J.Y.
    • Baraban S.C.

    Medial ganglionic eminence progenitors transplanted into hippocampus integrate in a functional and subtype-appropriate manner.

    eNeuro. 2017; 4

    • Upadhya D.
    • Hattiangady B.
    • Castro O.W.
    • Shuai B.
    • Kodali M.
    • Attaluri S.
    • et al.

    Human induced pluripotent stem cell-derived MGE cell grafting after status epilepticus attenuates chronic epilepsy and comorbidities via synaptic integration.

    Proc Natl Acad Sci U S A. 2019; 116: 287-296

    • Casalia M.L.
    • Howard M.A.
    • Baraban S.C.

    Persistent seizure control in epileptic mice transplanted with gamma-aminobutyric acid progenitors.

    Ann Neurol. 2017; 82: 530-542

    • Zipancic I.
    • Calcagnotto M.E.
    • Piquer-Gil M.
    • Mello L.E.
    • Alvarez-Dolado M.

    Transplant of GABAergic precursors restores hippocampal inhibitory function in a mouse model of seizure susceptibility.

    Cell Transplant. 2010; 19: 549-564

    • Paiva D.S.
    • Romariz S.A.A.
    • Valente M.F.
    • Moraes L.B.
    • Covolan L.
    • Calcagnotto M.E.
    • et al.

    Transplantation of inhibitory precursor cells from medial ganglionic eminence produces distinct responses in two different models of acute seizure induction.

    Epilepsy Behav. 2017; 70: 125-130

    • Lee H.
    • Yun S.
    • Kim I.S.
    • Lee I.S.
    • Shin J.E.
    • Park S.C.
    • et al.

    Human fetal brain-derived neural stem/progenitor cells grafted into the adult epileptic brain restrain seizures in rat models of temporal lobe epilepsy.

    PLoS One. 2014; 9e104092

    • Zhu Q.
    • Naegele J.R.
    • Chung S.

    Cortical GABAergic interneuron/progenitor transplantation as a novel therapy for intractable epilepsy.

    Front Cell Neurosci. 2018; 12: 167

    • Backofen-Wehrhahn B.
    • Gey L.
    • Bröer S.
    • Petersen B.
    • Schiff M.
    • Handreck A.
    • et al.

    Anticonvulsant effects after grafting of rat, porcine, and human mesencephalic neural progenitor cells into the rat subthalamic nucleus.

    Exp Neurol. 2018; 310: 70-83

    • Alvarez-Dolado M.
    • Calcagnotto M.E.
    • Karkar K.M.
    • Southwell D.G.
    • Jones-Davis D.M.
    • Estrada R.C.
    • et al.

    Cortical inhibition modified by embryonic neural precursors grafted into the postnatal brain.

    J Neurosci. 2006; 26: 7380-7389

    • Howard M.A.
    • Baraban S.C.

    Synaptic integration of transplanted interneuron progenitor cells into native cortical networks.

    J Neurophysiol. 2016; 116: 472-478

    • Hunt R.F.
    • Baraban S.C.

    Interneuron transplantation as a treatment for epilepsy.

    Cold Spring Harb Perspect Med. 2015; 5

    • Hunt R.F.
    • Girskis K.M.
    • Rubenstein J.L.
    • Alvarez-Buylla A.
    • Baraban S.C.

    GABA progenitors grafted into the adult epileptic brain control seizures and abnormal behavior.

    Nat Neurosci. 2013; 16: 692-697

    • Howard M.A.
    • Rubenstein J.L.
    • Baraban S.C.

    Bidirectional homeostatic plasticity induced by interneuron cell death and transplantation in vivo.

    Proc Natl Acad Sci U S A. 2014; 111: 492-497

    • Baraban S.C.
    • Southwell D.G.
    • Estrada R.C.
    • Jones D.L.
    • Sebe J.Y.
    • Alfaro-Cervello C.
    • et al.

    Reduction of seizures by transplantation of cortical GABAergic interneuron precursors into Kv1.1 mutant mice.

    Proc Natl Acad Sci U S A. 2009; 106: 15472-15477

    • Calcagnotto M.E.
    • Zipancic I.
    • Piquer-Gil M.
    • Mello L.E.
    • Alvarez-Dolado M.

    Grafting of GABAergic precursors rescues deficits in hippocampal inhibition.

    Epilepsia. 2010; 51: 66-70

    • Henderson K.W.
    • Gupta J.
    • Tagliatela S.
    • Litvina E.
    • Zheng X.
    • Van Zandt M.A.
    • et al.

    Long-term seizure suppression and optogenetic analyses of synaptic connectivity in epileptic mice with hippocampal grafts of GABAergic interneurons.

    J Neurosci. 2014; 34: 13492-13504

    • Anderson S.
    • Baraban S.

    Cell therapy using GABAergic neural progenitors.

    in: Noebels JL A.M. Rogawski M.A. Olsen R.W. Delgado-Escueta A.V. Source Jasper’s basic mechanisms of the epilepsies. 4th ed. 2012 ([Internet])

    • Hammad M.
    • Schmidt S.L.
    • Zhang X.
    • Bray R.
    • Frohlich F.
    • Ghashghaei H.T.

    Transplantation of GABAergic interneurons into the neonatal primary visual cortex reduces absence seizures in stargazer mice.

    Cereb Cortex. 2015; 25: 2970-2979

  • Comments are closed.